

Veritas Storage Foundation™ and Thin Provisioning
Rationale, Configuration and Benefits

March 2008

Scott Kaiser and Oscar Wahlberg

 1

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 4

SCOPE & AUDIENCE .. 5

THIN PROVISIONING – OVERVIEW AND CONCEPTS 6

Veritas Storage Foundation Overview .. 6

Thin Provisioning Overview ... 6

Thin Provisioning Concepts & Related Concepts .. 7

MIGRATING FROM LEGACY STORAGE ... 9

Legacy Migration – the Overlooked Challenge .. 9

Solve Legacy Migrations with Veritas SmartMove™ ... 11

Solve Legacy Migrations with Reclaim-before-move .. 11

Solve Legacy Migrations with Multi-volume File Systems .. 12

Enhance Legacy Migrations with Oracle .. 13

What If I Don’t Have Storage Foundation? The High Cost of “Free” 13

LEGACY MIGRATION COMMAND EXAMPLES ... 15

Legacy Migration with Veritas SmartMove™ .. 16

Legacy Migration with Reclaim-before-move ... 18

Legacy Migration with Storage Foundation Manager (SFM) ... 19

Legacy Migration with Multi-volume File Systems .. 22

KEEP STORAGE THIN .. 23

Use Thin File Systems .. 23

Deletions and Shuffling Reduce Thin Provisioning’s Benefit .. 23

VxFS Algorithms Reduce the Deletion Problem .. 24

SmartMove™ Helps in Some Cases .. 25

2/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Volume Mirroring with Thin LUNs .. 25

EFFICIENCY MEASUREMENTS ... 27

Quantifying Thin Storage Efficiency ... 27

Charts ... 27

Test Configuration ... 29

STORAGE TIERING WITH THIN PROVISIONING .. 30

Storage Tiering Overview ... 30

Dynamic Storage Tiering (DST) .. 30

DST with a Thin Provisioning Tier ... 30

CONCLUSION .. 34

FURTHER READING ... 35

APPENDIX ... 37

Command Example: Legacy Migration with Multi-volume File Systems 39

Command Example: Mirror Thin Provisioned LUNs .. 40

Using FlashSnap and SmartMove™ together when mirroring ... 41

Command Example: Restricting I/O to Physically Allocated Storage 42

Defragmenting before Migration – Pros and Cons .. 45

3/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Executive Summary

Data centers are increasingly turning to “thin provisioning” to simplify operational tasks
and save capital budget. Thin provisioning, also known as dynamic provisioning, creates a virtual
disk drive that appears, to applications and servers, much larger than the actual physical storage
allotted to it. As applications write to this virtual disk, the storage array automatically allocates
more physical storage. The process is transparent to applications and servers. This lets actual
storage demand, rather than forecasts (which tend to overestimate), determine how much
physical storage is used.

While thin provisioning is transparent to applications and servers, the reverse is not true –
the behavior of the applications and the server does impact how ‘thin’ the storage can be. That
behavior varies substantially across different vendors. Veritas Storage Foundation provides
substantial benefits for companies using or planning to use thin provisioning.

A key advantage of Storage Foundation comes when migrating data from legacy storage
to thin provisioning storage. Traditional migration tools copy both data and empty space, resulting
in a “thin” provisioning system that uses just as much storage as the legacy system. In contrast,
Storage Foundation strips out empty storage as it migrates data from traditional storage to thin
provisioned storage. This avoids unnecessary ‘grow’ events on the thin provisioning array.

Due to its thin provisioning-friendly algorithms and architecture, Storage Foundation
triggers fewer ‘grow’ events on the storage array than other alternatives. This results in better
storage utilization, less allocated but unused storage, and lower costs. Storage Foundation
accomplishes this with smart architectural choices, such as just-in-time metadata, compact
addressing, and in-place overwrites. And, when files are deleted, Storage Foundation re-uses the
space freed by those files before writing to new locations. These techniques reduce the amount
of physical storage that the array allocates. Hewlett-Packard’s StorageWorks Division recently
published a thin provisioning guide that gave high marks to Storage Foundation’s utilization
efficiency when used with HP’s thin provisioning array.

Storage Foundation supports all thin provisioning architectures currently available,
including 3PAR, Hitachi, Hewlett-Packard XP, Network Appliance, and Sun. Storage Foundation
has the broadest hardware compatibility list on the market, which lets customers standardize on
one toolset for their data center to reduce complexity.

When designing a thin provisioning architecture, consider whether your host-based
storage tools add to, or subtract from, the benefits of thin provisioning. Choosing the right ones
can be the difference between enjoying the savings that thin provisioning offers, and being asked
to figure out why the actual savings were less than forecast.

4/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Scope & Audience

This paper explains the value that Veritas Storage Foundation software can bring to a
data center using, or planning to use, thin provisioning. It conceptually describes how Veritas
software technically accomplishes these benefits. It does not attempt to place a specific financial
value on those benefits. If you are interested in such an analysis, contact your Symantec Account
Manager. It also provides detailed examples of the command line operations to perform on the
host to migrate legacy data to thin provisioning. It does not explain how to set up thin provisioning
itself, as those steps differ among different array vendors.

This paper is intended for engineering/architecture and operations groups for storage and
for UNIX servers in large enterprise data centers who are deploying or who are evaluating thin
provisioning.This paper also provides how-to steps and examples that an individual system
administrator or an operations group can use as an implementation guide. Technical staff may
also find this paper of use in describing the benefits of Storage Foundation to their management.

This paper assumes basic knowledge of data center operations and experience with
host-based storage management tools, such as file systems, logical volumes, and LUNs. It also
assumes basic understanding of thin provisioning, also known as dynamic provisioning.

5/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Thin Provisioning – Overview and Concepts

Veritas Storage Foundation Overview

Veritas Storage Foundation is an integrated software suite providing core storage
capabilities for servers. Major Storage Foundation components include the Veritas File System
(VxFS), a physical file system; Veritas Volume Manager (VxVM) which creates and manages
logical volumes comprised of LUNs or physical disks; Dynamic Multipathing (DMP) to provide
load balancing and I/O error recovery on SANs; and Storage Foundation Manager, with central
management and task workflow of the other components.

Thin Provisioning Overview

Thin provisioning relies on the observation that most organizations over allocate storage.
They do so for various reasons. Running out of storage can be career threatening for the
administrator of a mission critical application, whereas the cost of using too much storage may be
on someone else’s budget. Every developer anticipates their new application will be a killer app
used by everyone, but most won’t be. Getting storage early in a project when funds are allocated
is easier than getting it later, when funds may be canceled. If the server operations and storage
operations teams are split, the request for more storage may have a long lead time and may
cause friction. For these and for other reasons, organizations over allocate storage.

Thin provisioning offers an alternative. It creates virtual disk drives – LUNs, for Logical
Units – that appear to be one size, but whose actual physical storage only covers a fraction of
their claimed size. If a LUN needs more storage, the storage array allocates more physical
storage to it, without changing the presented size1.

Figure 1: Traditional and Thin provisioning. The storage used in the thin scenario is the same as the
file system (best case); actual storage usage can be higher, as later sections explain.

1 Some wags may prefer ‘pretended size’.

6/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Thin Provisioning Concepts & Related Concepts

Three concepts help explain thin provisioning. The first is ‘first write’, a technical concept.
Block devices, such as disk drives and LUNs, are sequentially numbered, linear arrays of blocks.
Blocks are fixed size, usually 512 bytes. Higher-level applications group blocks into files, which
are easier to use. As a result, block devices have no idea whether a given block is used or is not
used. So, they must assume all blocks are used. Thin provisioning’s inventors realized that the
block device could watch for the first write to a block. Before that first write, the block is not in use;
forever after, the storage array considers the block in use.

The second concept is inventory efficiency. This operational concept directly impacts
capital expense. After reading about the risk of running out of storage, readers may wonder if this
is more likely with thin provisioning than with traditional storage. In fact, the opposite is true. From
a business perspective, storage management is an inventory problem. You don’t want to run out
– it costs the enterprise and the staff - so data centers keep unused storage at the ready2. But
keeping unused storage is also expensive. Administrators are loath to reduce the amount of
spare storage they have, because that increases the risk of running out.

But cost can be lowered while maintaining or even reducing the risk. As spare storage –
or any inventory – fragments into small pieces, more must be kept to avoid running out at any one
location. By merging spare storage into larger groups, less storage is needed for the same risk of
running out -- as long as it can be quickly moved where needed. This concept – keep fewer,
larger buckets of inventory – reduces storage without increased risk3.

Thin provisioning storage arrays use this principle to keep spare storage for all
applications using that array. This makes more spare storage available to all applications. Thin
provisioning skips administrative steps like making the new storage visible to the server and
growing the volume and file system4. Couple this with the array automatically allocating storage,
and spare storage goes rapidly where it is needed – a requirement when storage moves from
small buckets close to the application to large buckets farther from the application.

Traditional storage is usually managed in one of two ways. The first is to fully allocate
storage close to the application, creating many small pieces of free storage. For applications with
highly predictable storage needs, like some scientific environments, this may work well. Everyone
grows a proportional amount and keeps a proportional spare storage buffer. Note that thin
provisioning is no worse than traditional storage in this scenario.

If there is any variability or unpredictability in storage usage across applications – typical
in most commercial and government environments – the traditional storage method performs
poorly. Applications that use more storage wind up with less spare storage; other applications
have more than they need. Thin provisioning, on the other hand, can balance based on actual
usage, keeping all spare storage available to any application that might need it. This results in
less risk of running out of storage than with traditional storage.

The second way to manage traditional storage is to keep spare storage in large chunks,
monitor usage closely, and manually move it as needed5. This is conceptually similar to thin
provisioning, but it places a large burden on the data center staff. Thin provisioning requires fewer
provisioning steps, giving it a time and effort advantage. Plus, the datacenter staff monitors fewer

7/45

2 If you never want to run out of storage, the math is clear: keep an infinite amount of unused storage,
which in turn requires infinite floor space, energy, cooling, and capital budget.
3 The authors avoid the term “pool”, because every storage vendor offers “pools” these days regardless of
whether they provide an inventory benefit.
4 More accurately, these steps are done up front.
5 In practice, data centers operate between the “allocate everything” and “allocate nothing” extremes.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

objects. They only monitor each thin provisioning array’s spare storage, rather than storage
usage for thousands of database tables and file systems. Thin provisioning has the advantage
over traditional storage in this management paradigm, too.

The third concept is uncorrelated demand, an operational issue. Ultimately, a thin
provisioning storage array can only provide as much physical storage as it has available. Imagine
two servers, each using a single thin LUN. Each thin LUN appears to be 10GB; each LUN has
8GB of physical storage allocated. One storage array provides both LUNs, and that array has
2GB free to allocate, in addition to the 16GB provisioned to the two LUNs (Figure 2). Server 1
hosts a retail internet database, serving US customers. This application is busiest in the fourth
quarter due to holidays. Server 2’s application is used by the finance department for quarterly
reporting. It is busiest the first two weeks of each quarter. Imagine the array allocates its last 2GB
of available storage to Server 1’s thin LUN in December. Because Server 2 is not likely to need
more storage until January 1 – its demand is uncorrelated with Server 1 – the storage operations
team has time to order more storage6.

If Server 1 was a General Ledger application, the many accounting entries required to
close the quarter would arrive – and use storage – at about the same time that Server 2’s quarter-
end financial reporting system would consume storage. Because both applications need more
storage at the about same time, they are more likely to break the bank – using up their allotted
8GB only to discover that the other application’s LUN has already been given those last 2GB of
storage. In this counterexample, the applications’ storage demand is correlated.

In practice, organizations do not group applications by uncorrelated storage demand. But
the same principle is now being used to balance virtual machines’ CPU loads, so the concept is
becoming familiar. Since thin provisioning benefits more than traditional storage, the concept is
more important to these environments. The Further Reading section has more information.

Figure 2: Illustration for Correlated and Uncorrelated Demand.

8/45

6 This example illustrates the concept, not real life in a data center. Few administrators willingly run with
margins this thin. But even with large safety margins, risk is further reduced by matching applications that
consume storage at different times. The tendency for separate departments to want dedicated storage makes
this harder to accomplish, since storage demand is often correlated within a department.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Migrating from Legacy Storage

"How long does getting thin take?"

– A. A. Milne

Legacy Migration – the Overlooked Challenge

Amid growing enthusiasm for thin provisioning and its benefits, the issue of migrating
from legacy storage is often overlooked or glossed over. Recall how thin provisioning works: the
storage array treats each block as empty until the first write. Legacy storage arrays do not track
whether a block has been written to or not. So how can you migrate from a legacy array to a thin
provisioning array without moving every block?

As shown below, migrations with traditional logical volume managers cannot; they must
copy every block from the original LUN and write it to the new LUN, effectively filling up the new,
thin LUN and defeating the whole point of thin provisioning.

Figure 3: A traditional Logical Volume Manager Migration.
Even empty blocks are copied.

Some organizations are evaluating “virtual” LUNs. These vLUNs are presented by a
switch, controller or appliance, which in turn mirrors or concatenates LUNs created by more
traditional storage arrays. Unfortunately, these approaches must also copy all the blocks during
migrations into thin LUNs, as shown below.

9/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Figure 4: Switch-, Appliance-, and Controller-based Virtualization.
Again, empty blocks are copied, defeating the value of thin provisioning.

The solution to this problem is to move up to a software level that knows if a block is
occupied or not: the file system. File systems’ basic job is to remember which blocks make up
each file. They must also track which blocks are free, in order to make new files or grow existing
ones. As a result, file systems know which blocks are free, and which are not.

Veritas Storage Foundation uses this knowledge to enable migrations from legacy
storage to thin provisioning, thus reclaiming any free space. Three methods are available,
described below. All three use Veritas Storage Foundation’s basic storage migration capability,
which has been in the product since its first release in 1990. This migration capability has been
used in production by thousands, if not tens of thousands, of customers.

Storage Foundation’s migration engine uses a fundamental capability called mirroring.
Mirroring makes one block device (like a LUN) an identical copy of another block device. Each
mirror can come from a different storage array, even if the arrays are made by different vendors
or if one LUN is bigger7. Once the copy is complete, the mirrors are in perfect sync with each
other; when a write request is received, it is not returned until all mirrors have acknowledged its
completion. Mirrors can be added and removed while an application is online and performing I/O
to the storage. Basic array migration adds a new mirror representing the new target array to
which the data will be migrated. Once that new mirror is in sync with the original mirror, the
original mirror, from the older source array, is removed.

In large configurations with hundreds or thousands of LUNs, the migration tasks of

10/45

7 The source LUN must be smaller than the target LUN. Once the smaller LUN is removed, the volume
can be grown to the size of the larger LUN, while the application is online and performing I/O. This is
useful when migrating to a thin LUN that is much larger than the existing legacy LUN.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

adding and removing mirrors can be simplified using Veritas Storage Foundation Manager. To
learn more about Storage Foundation Manager, see the Further Reading section.

Solve Legacy Migrations with Veritas SmartMove™

Storage Foundation knows which blocks are free and which are not. It uses this
knowledge during array migrations. When Veritas Volume Manager (VxVM) starts a migration, it
requests the free space map from the Veritas File System (VxFS). This is transparent to users
and administrators, and the migration steps are performed identically to traditional array
migrations. This facility is known as Veritas SmartMove™. When creating the new mirror on the
thin LUN, Storage Foundation only copies the occupied blocks. It does not copy the free blocks.

Figure 5: SmartMove™ only migrates occupied blocks

SmartMove™ is the simplest and fastest mechanism for migrating to thin provisioned
environments. It requires Storage Foundation version 5.0, Maintenance Pack 3 or higher. Sample
administrative commands for Veritas SmartMove™ are given in Appendix 1. The SmartMove™
method should be used whenever Storage Foundation 5.0MP3 is available, because it is fastest
and simplest. When it is not available, use one of the other methods described below.

Solve Legacy Migrations with Reclaim-before-move

 The legacy data migration challenge can also be solved using an approach we term
‘reclaim-before-move’. This approach requires more administrative effort, but is available with all
supported Storage Foundation versions, plus many older versions.

 In this method, the copy operation does not distinguish between empty and full blocks.
Rather, the file system and volume is shrunk just before the migration, so that there are fewer
empty blocks to be copied. After migration, they grow back to their original size. Both the shrink

11/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

and the grow happen online, while the application is running. Aside from the lack of SmartMove™
and the extra grow and shrink steps, this method uses the same array migration operation
described previously. Veritas Storage Foundation mirrors the LUN on the legacy, traditional,
source array to a LUN on the new, thin, target array.

 Like SmartMove™, file system knowledge of whether a block is free or full is used; but it
is used to reduce the number of empty blocks. All occupied blocks are kept during the shrink. The
source LUN does not shrink; Storage Foundation divides the LUN into one used and one unused
region, and then copies only the used region8.

server

Volume

File system

Shrink

mirror 1 (traditional) mirror 2 (thin)

server

Volume

File system

Shrink

mirror 1 (traditional) mirror 2 (thin)

Figure 6: Reclaim, then migrate.
The next step is to grow the volume and file system back to their original size (not shown).

Solve Legacy Migrations with Multi-volume File Systems

 A third method for performing migrations from traditional storage to thin storage is to use
Storage Foundation’s multi-volume file system capability. This method differs from the previous
two approaches by requiring an application outage, as well as more administrative work. The
authors offer one use case that is not handled better by the previous methods. Thoughtful
readers may find others.

 This use case is where the administrator plans to use a two-tier Dynamic Storage Tiering
(DST) implementation with their thin provisioning. The Storage Tiering section of this paper
explains DST in more detail. By using this multi-volume method for the legacy migration, the
administrator combines the legacy storage migration with the migration to DST.

12/45

8 At shrink, VxFS tell VxVM “this tail-end of the LUN is unused.” This is a much less granular
communication than SmartMove, essentially drawing a line at the volume’s end and marking the rest free.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

 Storage Foundation offers multi-volume file systems where a single file system can store
data in more than one volume9. By shifting data between two volumes in the same file system, a
traditional-to-thin migration can occur. The procedure is covered in detail Appendix 1.

Enhance Legacy Migrations with Oracle

Some applications can improve legacy migrations. Databases are especially relevant
because they often pre-allocate storage – often months or years worth. In these cases, less
storage can be reclaimed during a legacy migration, even with Veritas’ advanced technologies.
This is because the database files are opaque to Veritas Storage Foundation; conservatively,
Storage Foundation must assume they are completely full, and copy them accordingly, even
though actual data is usually a small fraction of these files. In such an environment, the amount of
space that can be reclaimed is approximately equal to the file system free space.

Oracle’s relational database added a storage reclamation capability in its 10g release.
Many IT professionals, including database administrators, are unaware that it exists. This feature
allows additional unused storage to be reclaimed during a migration from legacy storage to thin
provisioning.

Oracle Database 10g’s feature is very similar to VxFS shrink, but at the application level
rather than at the file system level. As a result, the procedure to reclaim storage during a
migration is conceptually similar to the reclaim-before-move approach discussed above. Because
Oracle 10g does not have a file system copy mechanism, Oracle’s file shrink feature improves
migrations from legacy storage to thin provisioning, but does not perform the migration itself.

The basic approach is as follows. Once the new, thin provisioning storage is created, but
before the migration and copy operations start, the DBA shrinks those Oracle files with significant
free space, leaving enough free space for normal operations. The system administrator then
initiates the migration using any of the three previously described methods, such as
SmartMove™. The legacy storage can then be removed10.

For more information on Oracle 10g file shrink, see the Further Reading section.

What If I Don’t Have Storage Foundation? The High Cost of “Free”

Other vendors have long advised customers to use their own tools, rather than Storage
Foundation, often by claiming that their tools are free. This claim ignores a key business concept,
known as Total Cost of Ownership, or TCO. TCO includes all relevant costs for a business
process or function, not just acquisition costs. Since other vendors’ tools are unable to help
migrate from legacy environments into thin environments, and since many of these tools also use
thin provisioning less efficiently than does Storage Foundation, storage costs are higher, and
hence their TCO is higher. Since storage hardware costs are typically much larger than Storage
Foundation license costs, the net result can be negative for the datacenter.

Organizations seeking a lower TCO often face political challenges. For example, if a
server group has the host software budget, and a storage group has the storage hardware

13/45

9 This can be an unusual concept, particularly for those with years of experience of having one file system
built on one volume. It can be demystified by thinking about how a file is addressed. The Veritas file
system stores file data in extents, an extent being a range of blocks. The addressing for an extent is
straightforward: <first block, length in blocks>. With a multi-volume file system, the addressing becomes
<volume, first block, length in blocks>.
10 Once mirroring is finished, the DBA can grow the files to their original size or to a larger size if the thin
LUN is substantially larger than the original. The DBA can also leave the files at their new, smaller size
and use Oracle auto-extend to manage the space.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

budget, then a solution which results in slightly higher costs to the server group but much lower
costs to the storage group may require coordination between both groups and their management.

If the legacy storage is not managed by Storage Foundation, there are options. Storage
Foundation offers tools to convert many vendors’ file systems and volumes to Storage
Foundation. These tools require administrative work and application downtime, but upon
completion, the systems enjoy Storage Foundation’s many benefits. For more conversion
information, see the Further Reading section.

Conversion costs may be high because of the downtime and the administrative work;
whether the savings from thin provisioning and from the other benefits of Storage Foundation will
offset those costs will vary by data center. This paper argues it is better to deploy and use
Storage Foundation from the beginning.

14/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

Legacy Migration Command Examples

 “Theories are always very thin and insubstantial, experience only is tangible.”

– Hosea Ballou

This section uses the following conventions:

Commands are in courier; names are in italicized courier.

The legacy disk group is named datadg

There is exactly one volume in the disk group, named datavol

The volume and filesystem are 20GB; the file system is mounted at mount point /data

The legacy LUN is 20GB and is named EMC_CLARiiON1_1
This is an enclosure-based name. If using classic naming, such as hdisk# on AIX, c#t#d# or
disk# on HP-UX, sd{letter}# on Linux, or c#t#d# on Solaris, substitute the classic name
instead. If you do not know your legacy disk’s name, see the vxprint command examples below.

The new, thin LUN is 40GB and is named 3PARDATA0_2

EMC_CLARiiON1_1 and 3PARDATA0_2 are both the media name and the access name for the
LUNs in these examples. The access name is the ‘system name’; the media name is the name
used by VxVM. VxVM lets users separate these names, which can be useful. In a real migration,
you may find a legacy LUN whose media name differs from its access name. If so, substitute the
media name for EMC_CLARiiON1_1 everywhere EMC_CLARiiON1_1 is used below11. To
determine the media name of your LUNs, run:

vxprint -g datadg –dt

Output 1: the legacy LUN’s media name and access name differ. The first name is the media
name, the second is the access name.

DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE
dm 3PARDATA0_2 3PARDATA0_2 auto 65536 83820544 -
dm datadg01 EMC_CLARiiON1_1 auto 65536 41877504 -

Output 2: the legacy LUN has the same media name and access name.

DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE
dm 3PARDATA0_2 3PARDATA0_2 auto 65536 83820544 -
dm EMC_CLARiiON1_1 EMC_CLARiiON1_1 auto 65536 41877504 -

Full path names are not given in the examples. From Storage Foundation version 4.0 on, all
Veritas commands are in /opt/VRTS/bin except for vxresize, which was overlooked. For vxresize,
use the full path name, /etc/vx/bin/vxresize. This will be fixed in a future release.

Setting up Dynamic Multipathing (DMP) to the new LUN is not described. For information on
these steps, see the Further Reading section.

15/45

11 This is unnecessary for the thin LUN, because the media name is set to the access name by the “vxdg
adddisk” step. Similarly, in the real world you control of the thin LUN’s media name, but the legacy LUN’s
media name is dealt to you.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

LUN creation and provisioning steps are not shown, as these vary substantially by vendor.
Similarly, the operating system-specific step of labeling/formatting the LUN is not shown.

These examples may not apply to Storage Foundation for Windows. A future paper on Windows
is anticipated.

If the system on which the legacy migration is being performed is a Cluster File System (CFS) or
a Storage Foundation for Oracle RAC cluster, the commands below must be executed on the
Cluster Volume Manager master node. Replace the mount and umount commands (needed only
in the multi-volume file system method) with the cfsmount and cfsumount commands; for more
information, consult the cfsmount(1m) man page.

The file system flag for mount and for fsadm varies. AIX uses -V, HP-UX -F, Linux -t, and Solaris
-F. All other commands are identical unless noted. The examples use Linux -t.

Figure 7: Object Relationships and Names.

Legacy Migration with Veritas SmartMove™

This approach requires VxFS and VxVM 5.0MP3 or higher.

1. Turn on SmartMove™. Edit the file /etc/default/vxsf so that the variable
usefssmartmove=yes

This tunable is system-wide and persistent, so it only needs to be set once per server.
Note that 5.0MP3 sets usefssmartmove=no by default. In a future release,
usefssmartmove will default to yes and step 1 (this step) will no longer be necessary.

16/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

17/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

2. (Optional). Defragment the file system. See Appendix for a discussion of pros and cons.

2-i. (Option 1: run until complete)

fsadm –t vxfs –ed /data

2-ii. (Option 2: cap run time at, in this example, 1 hour = 3600 seconds)12

fsadm –t vxfs –ed –T3600 /data

3. Add the new, thin LUN to the existing disk group.

3a. # vxdisksetup –i 3PARDATA0_2

3b. # vxdisk init 3PARDATA0_2

3c. # vxdg -g datadg adddisk 3PARDATA0_2

4. Add the new, thin LUN as a new plex to the volume. Three options are given. The first is
the default. The second finishes sooner, but with more I/O impact. The third has less
impact, but takes longer.

NOTE: The file system must be mounted to get the benefits of SmartMove™.

4a-i. (Option 1: default)

vxassist –g datadg mirror datavol 3PARDATA0_2

4a-ii. (Option 2: fast completion)13

vxassist –b –oiosize=1m –t thinmig -g datadg mirror datavol
3PARDATA0_2
vxtask monitor thinmig

4a-iii. (Option 3: minimum impact)14

vxassist -oslow –g datadg mirror datavol 3PARDATA0_2

5. (Optional) Test the new LUN’s performance before removing the old LUN15.

5a. Optional. Determine which plex corresponds to the thin LUN:

vxprint -g datadg

(output on next page)

12 Note that the time option flag is -t on AIX, HP-UX, and Solaris, and -T on Linux (because Linux
specifies -t for the file system flag).
13 The -b option runs the command in the background, but also multi-threads I/O, synchronizing multiple
mirror regions simultaneously. The -t option and the vxtask command simplify monitoring (since the
command is in the background); if you run multiple migrations simultaneously, assign a different name to
each. If using Storage Foundation 5.0 or higher, you do not need the “–oiosize=1m” option, as this is the
default. Internal tests suggest little benefit for values >1m.
14 Impact can be further reduced by specifying a number greater than 250, e.g., -oslow=500
15 This optional test makes VxVM read only from the new LUN (assuming it is available). Writes still go to
both LUNs to ensure both mirrors contain identical data.

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0
dg datadg datadg - - - - - -

dm 3PARDATA0_2 3PARDATA0_2 - 83886080 - - - -
dm EMC_CLARiiON1_1 EMC_CLARiiON1_1 - 41943040 - -OHOTUSE - -

v datavol fsgen ENABLED 41943040 - ACTIVE - -
pl datavol-01 datavol ENABLED 41943040 - ACTIVE - -
sd EMC_CLARiiON1_1-01 datavol-01 ENABLED 41943040 0 - - -
pl datavol-02 datavol ENABLED 41943040 - ACTIVE - -
sd 3PARDATA0_2-01 datavol-02 ENABLED 41943040 0 - - -

5b. Optional. The thin LUN corresponds to plex datavol-02. Direct all reads to come from
that LUN:

vxvol -g datadg rdpol prefer datavol datavol-02

6. Remove the original LUN. Note that ! is an escape on some shells; the example given
avoids bash escape.

6a. # vxassist -g datadg remove mirror datavol \!EMC_CLARiiON1_1

6b. # vxdg -g datadg rmdisk EMC_CLARiiON1_1

6c. # vxdisk rm EMC_CLARiiON1_1

7. Grow the file system and volume to use all of the larger thin LUN:

7a. # vxresize -g datadg -x datavol 40g 3PARDATA0_2

Legacy Migration with Reclaim-before-move

This approach requires VxFS and VxVM16.

1. Add the new, thin LUN to the existing disk group. The operating system-specific step of
labeling/formatting the LUN for OS recognition is not shown17.

1a. # vxdisksetup –i 3PARDATA0_2 privlen=32m

1a. # vxdisk init 3PARDATA0_2

1b. # vxdg -g datadg adddisk 3PARDATA0_2

2. Reclaim the storage. Note: the file system must be mounted for this operation18. Note
that example reclaims to 10 GB; this is just illustrative. Choose the size so that the file

18/45

16 All Storage Foundation versions since at least 1995 officially support this method. In some cases, the
amount of storage that can be reclaimed will be limited. If the file system is unable to shrink by the amount
requested, reduce the request by about 50% and retry. If successful, attempt to shrink again by 25% of the
attempt; if not successful, repeat the prior step. Repeat. Limitations: (1) file systems converted from
another vendor to VxFS prior to VxFS version 5.0 will be limited in their ability to shrink. Also, if an
mmapped file is present in VxFS 4.0 or earlier, the amount of storage that can be reclaimed may be limited
– the workaround is to close all applications during the shrink operation, but first attempt the operation with
the application open.

17 The privlen=32m argument in step 1a is not strictly necessary, but it is a recommended best practice.
This is not needed with Storage Foundation version 5.0 or higher, since 32m is the default.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
March, 2008

19/45

e.

system will be close to full, but leave some space available in case the application needs
new storage during the migration. For example, if the file system is 100gb total and 30%
full as show by a df -k, 40g may be an appropriate new siz

2a. # vxresize -g datadg -s datavol 10g

3. Add the new, thin LUN as a new plex to the volume. For throttling options, see the
previous section, Legacy Migration with Veritas SmartMove™ step 4.

NOTE: The file system must be mounted to get the benefits of SmartMove™.

3a. # vxassist –g datadg mirror datavol 3PARDATA0_2

4. (Optional) Test the new LUN’s performance before removing the old LUN19. See the
previous section, Legacy Migration with Veritas SmartMove™ step 5.

5. Remove the original LUN as a plex. Note that ! is an escape on some shells; the example
given avoids bash escape.

5a. # vxassist -g datadg remove mirror datavol \!EMC_CLARiiON1_1

6. Grow the file system and volume to use all of the larger thin LUN.

6a. # vxresize -g datadg -x datavol 40g 3PARDATA0_2

7. Remove the legacy LUN from the diskgroup:

7a. # vxdg -g datadg rmdisk EMC_CLARiiON1_1

7b. # vxdisk rm EMC_CLARiiON1_1

Legacy Migration with Storage Foundation Manager (SFM)

SFM is available to customers on a current Storage Foundation support contract at no additional
charge. SFM works with Storage Foundation version 4.0 and higher, and can be downloaded at:
www.symantec.com/sfm

SFM can simplify migrations, particularly when there are tens, hundreds, or thousands of volumes
or LUNs to migrate; when the migration spans multiple servers or multiple arrays; or when
administrators are not familiar with Veritas command line utilities

When given the source array and target array, SFM identifies all affected Storage Foundation
volumes, and suggests a mapping from legacy LUNs to new LUNs. The administrator can modify
the mapping if desired; the planned migration can either be run or be saved to execute later,
during a change window. Screenshots from the migration process are below.

The steps in the SFM “volume migration add-on” correspond to steps 2-5 as described above in
the SmartMove™ section; SmartMove™ step 6 can be performed via SFM as well, though not as
part of the automated volume migration process. Similarly, when performing a “reclaim before
move” migration with SFM, all steps can be performed with SFM but the order of operations

18 For VxFS/VxVM versions prior to 4.1, do not attempt to run this operation with an unmounted file
system. Version 4.1 and higher will block the operation if the file system is unmounted.
19 This optional test makes VxVM read only from the new LUN (assuming it is available). Writes still go to
both LUNs to ensure both mirrors contain identical data.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

http://www.symantec.com/sfm

differs20. Step 2 is performed by the administrator in SFM. Steps 1, 3-5, and 7 are performed by
SFM’s volume migration process. Step 6 is then performed by the administrator in SFM.

Given SFM’s intuitive GUI, the shots below showcase the process, but do not fully document it.

Figure 8: SFM Volume Migration. Select Volumes from legacy (source) array. By default, all are
migrated.

20/45

20 Either order of operations works. The CLI order minimizes the time the file system spends at the
temporary smaller size; the SFM order uses SFM’s bulk processing of multiple LUNs and volumes.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Figure 9: SFM Volume Migration. Select the target (new) array.

Figure 10: SFM Volume Migration. Mapping target LUNs to volumes. Drag and Drop interface.

21/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Legacy Migration with Multi-volume File Systems

Command examples are provided in the Appendix.

22/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Keep Storage Thin

Use Thin File Systems

VxFS is an extent-based file system, which uses thin provisioning more efficiently than
traditional block-based file systems. Block-based file systems typically use more metadata to
store the same data. Block-based file systems also tend to allocate their metadata, such as
inodes, when the file system is created. By contrast, VxFS creates metadata only as needed. As
a result, VxFS uses thin provisioning more efficiently.

Hewlett-Packard’s StorageWorks Division recently published a guide to using thin
provisioning. It has several good operational recommendations for thin provisioning; it agrees with
this paper’s recommendations on defragmentation, for example. As part of this work, the paper
analyzed whether different file systems are “capacity efficient”. The results, in Table 9 on page
15, show VxFS receiving high marks21,22.

http://h71028.www7.hp.com/ERC/downloads/4AA1-3937ENW.pdf

Deletions and Shuffling Reduce Thin Provisioning’s Benefit

As users or applications delete files or records, whether at the file system or at the
database layer, logical space is freed, but physical storage in the thin LUN stays allocated.
Consider a thin LUN that claims to be 10GB, but whose actual physical storage is 2GB. That 2GB
represents the “high water mark” for data used. Imagine this system had two files, each 1GB in
size as in Figure 11a (below). A user deletes one file, reducing the actual logical usage at the file
system layer at 1GB. The thin LUN remains 2GB, however (Figure 11b).

Figure 11a. The system before the deletion (above).

21 VxFS was not tested on Linux in this comparison, however VxFS’ format and allocation strategy are
common across platforms, so the authors expect the same results on Linux as on every other platform.

23/45

22 HP StorageWorks XP24000 Thin Provisioning Software implementation white paper. Accessed
December 4, 2007.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

http://h71028.www7.hp.com/ERC/downloads/4AA1-3937ENW.pdf

Figure 11b. Deleting files does not reclaim thin provisioned storage.

A similar situation can arise through a different mechanism, shuffling. A file system or an
application may rearrange its data so as to improve performance, typically by moving related data
that was far away closer together. Also called defragmenting, Microsoft’s NTFS and Veritas
Storage Foundation provide this service23, as do some databases. However, defragmenting
defeats thin provisioning’s relatively simple logic, which only tracks the first write to a given block.
At this time, Symantec recommends not defragmenting thin provisioned systems24.

A third, situation is when data moves within a file or a file system before shrinking25. The
amount of thin provisioned storage wasted will vary, but the basic operating rule is simple: once a
Veritas file system has been migrated to thin LUN, don’t shrink it26.

VxFS Algorithms Reduce the Deletion Problem

 When any file system receives a request for more storage – when an application or user
creates a new file or appends data to an existing file – that file system uses its internal algorithms
to choose the free blocks it will assign to that request. The Veritas File System’s algorithm
allocation is thin-provisioning friendly, and specifically deals with the deleted files issue.

 For scalability reasons beyond this paper’s scope, VxFS divides the file system into
regions called allocation units (AUs). When allocating space for a new file or for an appending
write, VxFS uses space from any partially used AUs units before it uses space from empty AUs.

23 Vendors who give users’ transparency into their products’ level of fragmentation, and the means to fix it
are attacked as “prone to fragmentation” by other vendors who refuse to disclose data on their own
products’ level of fragmentation. This is an example of the folk wisdom “no good deed goes unpunished.”
24 Commercial database applications rarely cause significant file system fragmentation, although they may
fragment at the database level. Fragmentation is seen in some UNIX mailservers, where deletions are
common, a large number of files are involved, and files’ sizes are widely distributed.
25 Data is typically moved from the back of the file (or file system) to the front, since the shrink happens at
the back, or tail, of the file (or file system).

24/45

26 This is not an issue of capability or safety, but is a best practice relating to keeping storage efficiency
high. If there is a need to shrink the Veritas file system – the authors cannot think of an example other than
migrating off of a big thin LUN back to a smaller traditional LUN – it is fully supported and safe to do so,
the only cost will be some thin provisioning efficiency.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

This works well with thin provisioning. To see why, consider an example.

 This example file system has 10 allocation units, each 256MB in size27, and is built on a
3PAR thinly provisioned LUN. One AU is completely filled up with several files. Another AU is half
full and half free. The other eight are empty; they hold no files and all blocks are free. For
simplicity, assume the thin array also allocates storage in 256MB chunks. Since two AUs are fully
or partially used, the array has allocated two chunks. As applications request more storage from
VxFS, VxFS always chooses free space from the partially filled AU to meet those requests. That
means the array need not allocate a third chunk. Now an application deletes a file; it happens to
reside on the partially full AU. Next, an application requests more storage from VxFS. Again,
VxFS chooses storage from the partially filled AU. Until VxFS completely fills the second AU, the
array will not need to allocate more chunks.

SmartMove™ Helps in Some Cases

 Symantec is working with thin provisioning vendors to explore methods to reclaim deleted
files and clean up after defragmentation, thus giving data centers even better storage utilization
from thin provisioning. In the meantime, data center staff can use Veritas SmartMove™ as a work
around should they find themselves in a situation where the file system is mostly empty, but the
thin LUN is largely or completely backed by physical storage. The process is similar to the legacy
migration described earlier. This time, migration is from a thin LUN to a thinner LUN.

 Recall our thin LUN – it represents itself as 10GB, it is backed by 2GB, but only 1GB of
data is actually stored on it. A new 10GB thin LUN can be created on the new array that is
backed not by the size of the current array’s actual storage (2GB), but by the size of the current
file system (1GB). By using Veritas SmartMove™ for the migration, only 1GB of data will be
copied to the new LUN, reclaiming 1GB of storage as part of an already scheduled process.

 Scheduled migrations are convenient times for such reclamations, because the staff time
and planning for the migration provides essentially a free ride for the reclamation. However, one
need not wait for an array migration to perform reclamation. A new, smaller thin LUN can be
provisioned from the current array, and Veritas Storage Foundation will copy only the used data
from the old to the new LUN.

Doing such ‘inter-array migration’ on an entire data center would cost more in staff time
that it would save in storage. Again, this method is presented only as a stop-gap for operators
who need an immediate option, and who cannot wait until Symantec and the thin provisioning
vendors deliver more automated solutions28.

Volume Mirroring with Thin LUNs

An important consideration when designing a storage architecture is volume mirroring via
a host-based volume manager. Host-based mirroring protects against array-level failures29. If the
arrays are located in different failure domains – as small as adjacent rooms with separate cooling
systems, or as large as geographic regions served by different electrical utilities – the system’s
resilience improves. Many enterprises use host-based mirroring when uptime is truly critical.

25/45

27 VxFS AUs are 256MB for an 8k file system block size, 128MB for a 4k block size, 64MB for a 2k block
size, and 32MB for a 1k (default) block size. The last AU in a file system is sized to the space available.
28 A third option is backup the original LUN and restore it to a newly created thin LUN. Like the
SmartMove™ approach, a new LUN is needed. Unlike the SmartMove™ approach, it requires downtime.
29 Host-level mirroring holds a key advantage over array-to-array mirroring: host-level mirroring can lose
either array without causing application downtime. By contrast, array-to-array mirroring sets up a source-
target dependency chain; if the source array is lost, the application must be restarted using the target array.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Host-based volume managers must behave differently when mirroring thin provisioned
arrays as compared to traditional arrays. One configuration and two failure scenarios must be
handled differently: volume creation, mirror synchronization after transient array failure, and
mirror synchronization after server failure. Each scenario is explained and discussed below.

First, volume creation. By default, when mirroring two LUNs, Storage Foundation ensures
data consistency by synchronizing the contents of the LUNs before the volume can be used30.
With thin provisioning, this synchronization is unnecessary. When fulfilling a read request of a
block that has never been written to, a thin provisioning LUN returns a standard value, typically
zero. This means that two thin provisioned LUNs are already effectively synchronized.
Furthermore, the synchronization step defeats the purpose of thin provisioning, since it triggers
unnecessary grow events on the LUN. Fortunately, Storage Foundation provides a method to
create mirrored volumes that are not synchronized before use.

Second, array failures. After an array failure – typically transient and due to power or
network connectivity – Storage Foundation normally copies the surviving array’s LUN to the failed
array’s LUN once the failed array recovers. This again defeats the purpose of thin provisioning.
There are two ways to avoid this issue. For versions prior to 5.0MP3, a full block copy can be
avoided using Storage Foundation’s FlashSnap technology. FlashSnap tracks changed blocks to
speed up mirror synchronization. In thin provisioning environments this has the added benefit of
avoiding a full copy triggered by an array failure. With 5.0MP3 and higher, the authors
recommend enabling both SmartMove™ and FlashSnap. Both SmartMove™ and FlashSnap limit
the copying of unused blocks when resyncing LUNs. But they capture slightly different usage data
at different granularity levels31. Using both features keeps LUNs as thin as possible post-resync.

Third, server failures. When a crashed server boots, Storage Foundation resyncs
mirrored volumes to ensure consistency between them, in case an in-flight write has been applied
to one half of a mirror but not the other. Storage Foundation does this by copying the contents of
one mirror to the other. But, if the mirrored LUNs are thin provisioned, this recovery process
defeats the thin provisioning logic. SmartMove™ cannot help in this case, since the file system
cannot be brought online until the volume is consistent. Helpfully, Storage Foundation can log the
locations of recent writes, limiting the resync to only the areas that had active writes. This log is
called a Dirty Region Log, or DRL32.

In summary, Storage Foundation handles these scenarios that arise when mirroring thin
provisioned LUNs. Command Examples showing how to mirror thin provisioned LUNs with
Storage Foundation are given in the Appendix.

30 Why must two new LUNs be in sync? In Symantec’s 15+ years of volume manager experience, we have
encountered applications that read blocks they have not written to. Because VxVM splits reads across
mirrors to increase IO bandwidth, successive reads of the same block could return different values if the
lower level LUNs had not been synchronized. VxVM’s default behavior protects both against this scenario,
and against the resulting consequences to the application.
31 Specific examples of the rational for using both FlashSnap and SmartMove are given in the Appendix.

26/45

32 When using Oracle 9i or higher, Storage Foundation’s ODM feature can improve performance. This API
between Oracle and Storage Foundation boosts performance of write-intensive databases. Storage
Foundation 5.0 further improves performance by automatically adjusting DRL behavior when Oracle sends
IO through ODM.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Efficiency Measurements

Quantifying Thin Storage Efficiency

The efficiency of various file systems while running on top of thin provisioned storage can
be measured and the results compared. The authors devised, conducted, and recorded a series
of initial tests and test results from host-based storage tools. Three tools were studied: Veritas
Storage Foundation; Linux’ ext3 and LVM; and Sun Microsystem’s ZFS.

Although we tested fewer tools than did HP in their recent paper33, our findings reinforce
their findings on Table 9, page 15, namely that Veritas Storage Foundation makes efficient use of
thinly provisioned storage. This paper extends that research by providing test measurements.

Three test series were conducted, each with five or more test runs to ensure repeatability
of the results. The first test series used the UNIX dd utility to create files and write data to them.
dd’s widespread availability makes this a popular testing tool among UNIX administrators. The
second and third tests used Symantec’s vxbench utility. This utility gives additional control of IO,
which can better match actual application IO. The second test series used vxbench to send
asynchronous IO (where write flushing can be delayed to improve performance), and the third
test series used vxbench to send synchronous IO (where writes must be flushed to disk before
returning).

Each test run consisted of creating an empty file system, then alternating creations and
deletion of between one and ten files, each between 1GB and 10GB in size. As a final step, all
files were deleted. After each step (e.g., mkfs, file creation, file deletion) the amount of physical
storage used in the thin provisioning array was recorded.

The results in all three test series were broadly similar. When empty, ext3/LVM used
substantially more physical storage than did Storage Foundation or ZFS (whose results were
comparable). This difference is likely due to the initial, static allocation of inodes across different
regions of the LUN by ext3. Once a substantial amount of data was created, Storage Foundation
typically used 12% less physical storage than did ZFS. Storage Foundation used between 4%
and 26% less physical storage than did ext3/LVM, depending on the test run. None of the three
tools tested reclaimed any storage upon final deletion of all files.

Charts

In each chart, the dashed line represents the amount of user data that the test generated.
It starts at zero when the file system is created (the metadata of the file system is not considered
user data). It increases as files are created, and decreases as files are deleted. The results of the
three vendor tools are represented by solid lines. Essentially, the lower (closer) a solid line lies to
the dashed line, the better the performance of that tool. Note that because thinly provisioned
storage uses an “allocate forever after first write”, when all files are deleted, the amount of user
data drops to zero, but the amount of physical storage the array has allocated does not change.

27/45

33 http://h71028.www7.hp.com/ERC/downloads/4AA1-3937ENW.pdf Accessed December 4, 2007.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

http://h71028.www7.hp.com/ERC/downloads/4AA1-3937ENW.pdf

dd test
Thin Provisioning Efficiency

Physical Storage
Committed on the Array

(GB) Storage Foundation vs. Alternatives

0

10

20

30

40

50

60

70

80

mkfs

ad
d 5

0G
B

rm
 20

GB

ad
d 2

0G
B

rm
 10

GB

rm
 10

GB

ad
d 2

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 20

GB

ad
d 2

0G
B

rm
 al

l

Theoretical Best

SF Averages

ZFS Averages

LVM & ext3 Averages

Figure 12a. Storage Efficiency measurements, dd test series

vxbench asynchronous test
Thin Provisioning Efficiency

Storage Foundation vs. Alternatives

0

10

20

30

40

50

60

70

80

mkfs

ad
d 5

0G
B

rm
 20

GB

ad
d 2

0G
B

rm
 10

GB

rm
 10

GB

ad
d 2

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 20

GB

ad
d 2

0G
B

rm
 al

l

Physical Storage
Committed on the Array

(GB)

Theoretical Best

SF Averages

ZFS Averages

LVM & ext3 Averages

Figure 12b. Storage Efficiency measurements, vxbench asynchronous test series

28/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

vxbench synchronous test
Thin Provisioning Efficiency

Physical Storage
Committed on the Array

(GB)
Storage Foundation vs. Alternatives

0

10

20

30

40

50

60

70

mkfs

ad
d 5

0G
B

rm
 20

GB

ad
d 2

0G
B

rm
 10

GB

rm
 10

GB

ad
d 2

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 10

GB

ad
d 1

0G
B

rm
 20

GB

ad
d 2

0G
B

rm
 al

l

Theoretical Best

SF Averages

ZFS Averages

Figure 12c. Storage Efficiency measurements, vxbench synchronous test series

Note: Figure 12c lacks ext3/LVM measurements because ext3/LVM were unable to successfully
complete the benchmark. ext3/LVM returned write errors that prevented the test from completing.
These errors were only seen during the synchronous write tests, and only with ext3/LVM. The
errors were consistent and reproducible. They suggest an ext3 or LVM bug, but further
investigations were not made, so this cannot be stated conclusively.

Test Configuration

Storage:

3PAR InServ, firmware version 2.2.1
10 x 10GB Thin Provisioned LUNs

Server & Software:

For Storage Foundation and ZFS tests:
Sun V240, 2 1.5 GHz UltraSparc-IIIi CPUs, 2GB RAM
Storage Foundation 5.0 MP1
ZFS as shipped with Solaris 10 Update 4

For ext3/LVM tests:
Sun v20z, 2 2.2 GHz AMD Opteron CPUs, 8 GB RAM
Ext3/LVM as shipped with RedHat Enterprise Linux 4 Update 4

Commands used for file creation:

Test Series 1:
dd if=/dev/zero of=<filename> bs=1048576k count=$1

Test Series 2:
vxbench -m -w write -i iosize=1g,iocount=<filesize> <filename>

Test Series 3:
vxbench -m -w write -o sync -i iosize=1g,iocount=<filesize>
<filename>

29/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Storage Tiering with Thin Provisioning

Storage Tiering Overview

Since thin provisioning has different costs and different behaviors than traditional storage,
it can be treated as a separate storage tier. Because tiered storage is a term used to mean many
different things, it is worth quickly recapping the different approaches to implementing tiered
storage. Static tiering involves choosing a storage tier for an application when the application is
put into production; the tier is rarely (if ever) changed. Infrastructure tiering uses one tier for an
application’s main data, and a secondary tier for that same application’s “infrastructure” storage,
such as snapshots, standby site replicas, or disk backups. Dynamic Tiering gives a single
application both a primary and a secondary storage tier, and then migrates data between the tiers
based on the data’s business value. Typical indicators of business value are access frequency,
the user, or the file type. Thin provisioning can be used in any of these three tiering scenarios –
static, infrastructure, or dynamic.

Dynamic Storage Tiering (DST)

Storage Foundation’s Dynamic Storage Tiering (DST) provides the policies and policy
engine to move data among tiers. The administrators creates policies based on business
requirements, which are translated to attributes such as file name and file type, directory, user,
and usage frequency. Uniquely, DST moves data transparently to applications and users, by
keeping the logical location of files and directories exactly the same. More information on DST
can be found in the Further Reading section.

DST with a Thin Provisioning Tier

DST can help protect against thin provisioning error scenarios. Because thin provisioning
hands out logical storage before physical storage, it can run out of physical storage while still
having unfulfilled storage commitments to hosts and applications – much like a bounced check.
Adding physical storage to the array resolves the situation, but that can take time34. DST provides
a method to stay up and running – and, indeed, even to add more storage – until physical storage
is added to the thin provisioning array. Here’s how.

VxFS can use multiple volumes. This overcomes the traditional limitation of mapping a
single volume to a file system. For example, take a single thin provisioned volume that runs out of
physical storage, shown in Figure 13a. To keep the application up and running, a second volume
is added to the file system35. This second volume comes from a second array, since the original
array has no more physical storage. DST policies are then set to direct all new writes to go to the
second volume, while reads and updates to the original data still use the first volume36. In effect,
Storage Foundation can restrict I/O activity on the original LUN to only those blocks actually
backed by physical storage (see Figure 13b). In this way, applications are not confused by the
visible, but unavailable, storage on the original volume.

Once more physical storage is added to the first volume, the second volume can be
‘ejected’ – VxFS will automatically move all data from the second volume to the original volume,

34 Some array vendors improve response time through phone-home functionality, although that works less
well in secure facilities and in geographies with limited telecommunications and logistics maturity.
35 For online operation, the first VxVM volume must be in an object called a volume set. This can be done
at creation time or later. We recommend putting VxVM volumes in volume sets for this added flexibility.

30/45

36 More precisely, overwrites of existing files – common in databases – go to the original volume. New files
and appending writes to existing files go to the new volume.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

and will then remove the second volume. The system is then back to the original configuration
(Figure 13c). The Appendix provides command examples and policies to use in this scenario.

Figure 13a: A Thinly Provisioned LUN runs out of physical storage.

Figure 13b: A second LUN from another array is added; VxFS policies are set to keep using data
from the original LUN, but to place any new data on the second LUN.

Figure 13c: Physical storage is added to the original array. VxFS moves all data from the second
LUN to the original LUN, then removes the second LUN.

31/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

DST may also help specific applications that are a poor fit for thin provisioning. Consider
applications that frequently delete files soon after they are created, such as an email system with
spam folders, or applications that, in addition to their ‘normal’ files, rapidly create then delete
many lock files. These applications fit less well with thin provisioning, because, as described in
the previous section deleted files use thin provisioning less efficiently.

Dynamic Storage Tiering can address both of these situations. A two-tier system can be
built, where both tiers come from the same storage array. Tier One is a traditional, fully
provisioned LUN. Tier Two is a much larger thinly provisioned LUN. The DST policy instructs the
file system to create new files on Tier One (traditional). Once the ‘deletion window’37 is complete,
the remaining files are moved to Tier Two, the thin tier. Figure 14 illustrates the concept.

Again, moving files from Tier One to Tier Two is undetectable by users or applications.
The file remains in the same directory it was originally created in, and neither stub files nor
symbolic links are used. The file system stays online before, during, and after the move and a file
can even be read and written while it is moving between tiers.

/application1/data/

datafile2

32/45

Figure 14: Thin LUN as a Storage Tier. Files stay in the same directory, but their underlying storage
can move between Tier 1 and Tier 2.

37 The ‘deletion window’ describes the concept that a file is deleted near the start of its life, if at all. A lock
file, for example, is deleted as soon as the transaction it protects or flags is complete – typically a few
seconds. For an email server, spam will typically be deleted within a few days of receipt, for example by
the user checking their mail or by policies set by the ISP for suspected spam. Once the deletion window is
closed – a few seconds after creation for lock files, a week or two after creation for spam files – surviving
files can move to thin provisioning with low risk of deletion.

Tier 1:
Traditional

Tier 2:
Thinly-Provisioned

directory:

files:

LUNs:

lockfile1
datafile1
lockfile2

…

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Applications that do not cleanly handle I/O errors38, may also find thin provisioning
challenging, particularly for files holding their metadata. To provide an added measure of safety,
all metadata files can be stored on a traditional LUN, while regular files can be stored on a thin
LUN. In this case, the DST policy would specify that all files with specific attributes – e.g., with
names ending in .ctl or .log – must be created on and must remain on the traditional LUN.

DST differs from array-based approaches to storage tiering in three important ways. First,
DST gives administrators rich control over migrations using not just aging and usage statistics,
but more user-, application- and business-friendly attributes like a file’s name, extension, size,
owner, group, and directory. Second, array tools cannot list which files’ blocks have moved from
one LUN to another. They can report which blocks on a LUN have been moved, but they cannot
map those blocks to files. In contrast, DST can list the tier on which a file sits, and it can list all
files on a given tier. DST keeps a history log of the file name, the starting tier, and ending tier, and
the time of migration to give enterprise administrators complete visibility.

Third, when evaluating a tiered storage offering, always understand what happens to Tier
1 data if Tier 2 suffers a failure. If a section of a file is frequently accessed, and another section
infrequently accessed – in a database file, for example – how will the application behave if
portions of the file are missing due to a Tier 2 failure39? How does the vendor’s offering
guarantee that file system metadata is kept Tier 1? Dig deep enough, and you will find that arr
based tiering mechanisms cannot distinguish between data which is required for the system to
work – control files, metadata, and so on – and data which is not

ay-

 storage.

40. This limitation reduces
system availability. DST, in contrast, can force database control files, metadata files, its own
metadata, and other critical components to stay on Tier 1

In summary, DST can help avoid or recover from thin provisioning error scenarios. It can
filter out transient files from hitting the long-term (and thin) storage, thus improving thin
provisioning utilization. It can also provide added security for applications which do not cleanly
deal with out of space errors. This architecture will not be appropriate for all, or even most
applications, but it lets these applications use thin provisioning, which they might otherwise find to
be difficult or of minimal value.

38 A thin provisioning array typically returns an I/O Error when it cannot allocate physical storage to a
thinly provisioned LUN.
39 UFS, the UNIX file system, panics the server if certain metadata is not available, for example.

33/45

40 In most systems, the blocks on Tier 1 will be available even if Tier 2 fails. However, this is not a
sufficient safeguard, because the array vendors’ tiering logic cannot determine whether it is migrating
critical data to Tier 2.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Conclusion

“You can never be too rich or too thin”

– Truman Capote

Modern datacenters are constantly asked to do more with less. Thin provisioning
promises to let them do so. It is a mistake to stop there, however. As we have discussed,
thin provisioning can be ‘thinner’ – more efficient with higher utilization – when Storage
Foundation is used to complement thin provisioning hardware.

When selecting which host tools to use with thin provisioning, architecture and
operations team members should pay close attention to how such tools impact physical
storage usage both for migration and for daily operations. Choosing the wrong
technology can reduce thin provisioning's benefit. Furthermore, claims that a tool is ‘free’
should be carefully evaluated. A Total Cost of Ownership (TCO) approach may show that
the ongoing savings from an alternative solution can quickly and easily outweigh any
initial acquisition costs.

 Storage Foundation delivers all the capabilities needed to reduce wasted disk
space before the move to thin provisioning, supports the migration itself, and handles
operations – creation, deletion, etc - in a thin provisioning environment with the most
efficient approach available today. Integrated storage tiering completes the solution,
delivering protection against over subscription of physical storage.

A superior approach is only as good as the range of its applicability. Storage
Foundation has the most comprehensive hardware compatibility list available and
supports all current thin provision architectures including 3PAR, Hitachi, Hewlett-Packard
XP, Network Appliance, and Sun. From an operating system perspective, Storage
Foundation is available on AIX, HP-UX, Linux, Solaris, and Windows. This broad
coverage of servers and of thin-provisioning storage allows customers to standardize on
a common tool set across platforms, reducing complexity and increasing standardization.

Selecting the right host-based storage tools is crucial to the success of any thin
provisioning project. Storage Foundation’s wide installed base, unmatched support
matrix and history of leadership in supporting thin provisioning allow customers to fully
realize thin provisioning's benefits.

34/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Further Reading

“I like a thin book because it will steady a table.”
- Mark Twain

Thin Provisioning:
Hall, Nigel. “Regaining Control of Storage Growth with Thin Provisioning.” Hitachi Data
Systems. June 2007.
http://www.hds.com/assets/pdf/wp-regaining-control-of-storage-growth-thin-provisioning.pdf

Hough, Geoffrey and Sandeep Singh. “3PAR Thin Provisioning.” 3PAR Incorporated. June
2003.
http://www.3par.com/documents/3PAR-tp-wp-01.2.pdf

Oracle 10G’s Reclamation Capability via File Shrink:
Floss, Kimberley. “Shrink Segments Online and in Real Time.” Oracle Magazine, May-June
2005.
http://www.oracle.com/technology/oramag/oracle/05-may/o35tuning.html

Puri, Aradhana. “More New Features for OCPs.” Oracle Magazine, January-February 2005.
http://www.orafaq.com/forum/t/22393/0/

Dynamic Storage Tiering:
Karche, Ganesh, Murthy Mamidi and Paul Massiglia, Using Dynamic Storage Tiering. 2006.
http://eval.symantec.com/mktginfo/enterprise/yellowbooks/dynamic_storage_tiering_03_2006.e
n-us.pdf

Wu, Joel C., Bo Hong and Scott A. Brandt. “Ensuring Performance in Activity-Based File
Relocation.” University of Santa Cruz. 21 April 2007. http://www.ssrc.ucsc.edu/Papers/wu-
ipccc07.pdf

 “HP and Symantec: Enabling ILM solutions with Dynamic Storage Tiering white paper.”
Hewlett-Packard Corporation. July 2007.
http://h71028.www7.hp.com/ERC/downloads/4AA1-2792ENW.pdf

Storage Foundation Manager:
Storage Foundation Manager webpage with documentation, FAQ, and free download.
Symantec. Accessed 18 October 2007.
http://www.symantec.com/sfm

Converting to Storage Foundation:
“Veritas Storage Foundation™ Migration Guide: AIX.” Symantec. 2006.
http://ftp.support.veritas.com/pub/support/products/Foundation_Suite/284308.pdf

“Veritas™ Volume Manager Migration Guide: HP-UX.” Symantec. 2006.
http://ftp.support.veritas.com/pub/support/products/VolumeManager_UNIX/283743.pdf

“Veritas™ Volume Manager Migration Guide: Linux.” Veritas. 2004.
http://ftp.support.veritas.com/pub/support/products/Foundation_Suite/269978.pdf

“Veritas™ vxvmconvert for Solaris User Guide.” Veritas. December, 2002.
http://support.veritas.com/docs/255198

35/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

http://www.hds.com/assets/pdf/wp-regaining-control-of-storage-growth-thin-provisioning.pdf
http://www.3par.com/documents/3PAR-tp-wp-01.2.pdf
http://www.oracle.com/technology/oramag/oracle/05-may/o35tuning.html
http://www.orafaq.com/forum/t/22393/0/
http://eval.symantec.com/mktginfo/enterprise/yellowbooks/dynamic_storage_tiering_03_2006.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/yellowbooks/dynamic_storage_tiering_03_2006.en-us.pdf
http://www.ssrc.ucsc.edu/Papers/wu-ipccc07.pdf
http://www.ssrc.ucsc.edu/Papers/wu-ipccc07.pdf
http://h71028.www7.hp.com/ERC/downloads/4AA1-2792ENW.pdf
http://www.symantec.com/sfm
http://ftp.support.veritas.com/pub/support/products/Foundation_Suite/284308.pdf
http://ftp.support.veritas.com/pub/support/products/VolumeManager_UNIX/283743.pdf
http://ftp.support.veritas.com/pub/support/products/Foundation_Suite/269978.pdf
http://support.veritas.com/docs/255198

Inventory Planning; Correlated and Uncorrelated Demand:
Cachon, Gerard and Christian Terwiesch. An Introduction to Operations Management. Boston:
McGraw-Hill/Irwin, 2005. In particular, see Chapters 11 and 12.

Dynamic Multipathing:
 “Dynamic Multipathing: Optimizing Availability and Performance in Multi-Vendor
Environments.” Symantec. May 2007. Pages 16-23 discuss setup steps.
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-
whitepaper_vsf_5.0_dynamic_multi-pathing_05-2007.en-us.pdf

36/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_vsf_5.0_dynamic_multi-pathing_05-2007.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_vsf_5.0_dynamic_multi-pathing_05-2007.en-us.pdf

Appendix

“Our revels now are ended. These our actors, as I foretold you, were all spirits, and
are melted… into thin air.”

– Shakespeare

This section uses the following conventions:

Commands are in courier; names are in italicized courier.

The legacy disk group is named datadg

There is exactly one volume in the disk group, named datavol

The volume and filesystem are 20GB; the file system is mounted at mount point /data

The legacy LUN is 20GB and is named EMC_CLARiiON1_1
This is an enclosure-based name. If using classic naming, such as hdisk# on AIX, c#t#d# or
disk# on HP-UX, sd{letter}# on Linux, or c#t#d# on Solaris, substitute the classic name
instead. If you do not know your legacy disk’s name, see the vxprint command examples below.

The new, thin LUN is 40GB and is named 3PARDATA0_2

EMC_CLARiiON1_1 and 3PARDATA0_2 are both the media name and the access name for the
LUNs in these examples. The access name is the ‘system name’; the media name is the name
used by VxVM. VxVM lets users separate these names, which can be useful. In a real migration,
you may find a legacy LUN whose media name differs from its access name. If so, substitute the
media name for EMC_CLARiiON1_1 everywhere EMC_CLARiiON1_1 is used below41. To
determine the media name of your LUNs, run:

vxprint -g datadg –dt

Output 1: the legacy LUN’s media name and access name differ. The first name is the media
name, the second is the access name.

DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE
dm 3PARDATA0_2 3PARDATA0_2 auto 65536 83820544 -
dm datadg01 EMC_CLARiiON1_1 auto 65536 41877504 -

Output 2: the legacy LUN has the same media name and access name.

DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE
dm 3PARDATA0_2 3PARDATA0_2 auto 65536 83820544 -
dm EMC_CLARiiON1_1 EMC_CLARiiON1_1 auto 65536 41877504 -

These examples may not apply to Storage Foundation for Windows. A future paper on Windows
is anticipated.

37/45

41 This is unnecessary for the thin LUN, because the media name is set to the access name by the “vxdg
adddisk” step. Similarly, in the real world you control of the thin LUN’s media name, but the legacy LUN’s
media name is dealt to you.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Full path names are not given in the examples. From Storage Foundation version 4.0 on, all
Veritas commands are in /opt/VRTS/bin except for vxresize, which was overlooked. For vxresize,
use the full path name, /etc/vx/bin/vxresize. This will be fixed in a future release.

Setting up Dynamic Multipathing (DMP) to the new LUN is not described. For information on
these steps, see the Further Reading section.

LUN creation and provisioning steps are not shown, as these vary substantially by vendor.
Similarly, the operating system-specific step of labeling/formatting the LUN is not shown.

If the system on which the legacy migration is being performed is a Cluster File System (CFS) or
a Storage Foundation for Oracle RAC cluster, the commands below must be executed on the
Cluster Volume Manager master node. Replace the mount and umount commands (needed only
in the multi-volume file system method) with the cfsmount and cfsumount commands; for more
information, consult the cfsmount(1m) man page.

The file system flag for mount and for fsadm varies. AIX uses -V, HP-UX -F, Linux -t, and Solaris
-F. The rest of the commands are identical. The examples use Linux -t.

Figure 15: Object Relationships and Names.

38/45

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Command Example: Legacy Migration with Multi-volume File Systems

This approach requires VxFS and VxVM 4.1 or higher, and a Storage Foundation Enterprise
license42.

1. Convert the existing VxFS file system to a multi-volume file system. The file system is
mounted at /data, the volume is datavol, which is in diskgroup datadg.

1a. Determine the version of the volume's diskgroup:
vxdg list datadg | grep version: | awk '{ print $2 }'
105
1b. If the version is less than 110, upgrade the diskgroup:
vxdg upgrade datadg
1c. Determine the disk layout version of the file system:
vxupgrade /data
Version 5
1d. If the disk layout is version is less than 6, upgrade to Version 6 or 743:
vxupgrade -n 7 /data
1e. Unmount the file system:
umount /data
1f. Convert the volume into a volume set. The volume set name vset1 is used as an
example:
vxvset -g datadg make vset1 datavol
1g. Edit the file [/etc/filesystems on AIX; /etc/fstab on HP-UX and on Linux; /etc/vfstab on
Solaris] to replace the volume device name, datavol, with the volume set name,
vset1.
1h. Mount the file system.
mount -t vxfs /dev/vx/dsk/datadg/vset1 /data
1i. Add the new, thin LUN to the existing disk group. The operating system-specific step
of labeling/formatting the LUN for OS recognition is not shown44.
vxdisksetup –i 3PARDATA0_2 privlen=32m
vxdisk init 3PARDATA0_2
vxdg -g datadg adddisk 3PARDATA0_2
1j. Create and add the volume comprised of the thin LUN to the volume set:
vxassist -g datadg make thinvol 40g 3PARDATA0_2
vxvset -g datadg addvol vset1 thinvol
1k. Add the new volume to the file system:
fsvoladm add /data thinvol 40g

39/45

2. Create policies to move all files and metadata to the new, thin LUN45, then verify.

fsapadm define /data datapolicy thinvol datavol
fsapadm define /data metadatapolicy datavol
fsapadm assignfs /data datapolicy metadatapolicy
fsapadm list /data

42 Storage Foundation (SF) Cluster File System, SF Cluster File System HA, SF for Oracle RAC, SF for
Oracle Enterprise, SF for DB2 Enterprise, and SF for Sybase Enterprise all provide the “Enterprise” level
license needed.
43 Version 7 is only available with VxFS version 5.0 or higher.
44 The privlen=32m argument in step 1a is not strictly necessary, but it is a recommended best practice.
This is not needed with Storage Foundation version 5.0 or higher, since 32MB is the default.
45 These policies also tell the file system to create any new files on the thin volume, unless it is full, in
which case new files are placed on the original volume.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

3. Move the existing files to the new, thin LUN.

Storage Foundation version 5.0 command:
find /data –exec fsapadm enforecefile –f strict ‘{}’ \;

Storage Foundation version 4.1 command:
find /data –exec fsapadm enforecefile ‘{}’ \;

Optional. Verify the files moved. If you have many files, you may wish to verify a subset. The
fsmap command is only available with Storage Foundation version 5.0 and higher.

find /data –exec fsmap ‘{}’ \;

4. Shrink the original volume to the desired size.

vxresize -g datadg -s datavol 50m

5. Add a new fully-provisioned, non-thin LUN from the new array to the disk group.

vxdisk init 3PARDATA0_3
vxdg -g datadg adddisk 3PARDATA0_3

6. Mirror that LUN to the original volume.

vxassist –g datadg mirror datavol 3PARDATA0_3

7. Break off the original mirror and remove the LUN.

vxassist -g datadg remove mirror datavol \!EMC_CLARiiON1_1
vxdg -g datadg rmdisk EMC_CLARiiON1_1

 # vxdisk rm EMC_CLARiiON1_1

Command Example: Mirror Thin Provisioned LUNs

This section uses the same conventions and object names given in the section “Legacy Migration
Command Examples”, except that a second thin provisioned LUN of 40GB is used, named
3PARDATA1_1

The step of applying an operating system label to the LUNs is not shown.

Mirroring Thin Provisioned LUNs requires FlashSnap, which is used for recovery if one LUN
becomes unavailable. FlashSnap requires a Storage Foundation Enterprise license46. The
example given combines the FlashSnap Data Change Object (DCO) with the DRL for easier
configuration; this requires version 4.0 or higher47. The DCO and DRL use a portion of each of
the two LUNs for metadata to track changed blocks48.

40/45

46 Alternately, a FlashSnap Option license may also be used; this is an older license that is no longer sold,
but readers may encounter it on an older server
47 Mirroring thin provisioning LUNs can also be accomplished using Veritas Volume Manager version 3.2
or 3.5, but the DCO and the DRL must each be created separately. For such a setup on these older versions,
consult the product documentation.
48 Since some array vendors license thin provisioning as an additional cost, you may wish to create this
object, called a data change object (DCO), on separate small LUNs that are not thinly provisioned. In some
cases, this will also improve performance. Further, if you have many LUNs to mirror, you can share the

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Note: If you are using Storage Foundation version 5.0MP3 or higher, perform Step 1; if not, skip
to Step 2.

1. Turn on SmartMove™. Edit the file /etc/default/vxsf so that the variable
usefssmartmove=yes

This tunable is system-wide and persistent, so it only needs to be set once per server.
Note that 5.0MP3 sets usefssmartmove=no by default. In a future release,
usefssmartmove will default to yes and step 1 (this step) will no longer be necessary. If
you are using Storage Foundation 5.0MP3 in either a failover cluster or in a CVM (active-
active) cluster, turn on SmartMove™ on all cluster nodes.

2. Verify you have a license key to use FlashSnap.

2a. # vxlicrep -i | grep FMR

You should see one or more lines like:
FMR_DGSJ = Enabled
FMR_DGSJ#VERITAS Volume Manager = Enabled

Note that this step does not distinguish between temporary keys and permanent keys –
rerun the command without grep to verify that your keys are permanent.

3. Create the diskgroup using the two LUNs.

3a. # vxdisksetup –i 3PARDATA0_2

3b. # vxdisksetup –i 3PARDATA1_1

3c. # vxdg init datadg 3PARDATA0_2 3PARDATA1_1

4. Optional. If you used a legacy diskgroup instead of creating a new diskgroup in step 3,
verify your diskgroup version and upgrade if required.

4a. # vxdg list datadg | grep version

If the version is not 110 or higher, upgrade as shown in step 4b.

4b. # vxdg upgrade datadg

5. Create the mirrored volume with FlashSnap and Dirty Region Logging (DRL) enabled,
and without synchronizing the mirrors. The DCO, used by FlashSnap and by DRL, will
use a small amount of space, so specify a volume size a few MB smaller than the LUN
size.

5a. # vxassist –g datadg make datavol 40958m nmirrors=2 init=active
logtype=dco dcoversion=20 drl=on fastresync=on 3PARDATA0_2
3PARDATA1_1

Using FlashSnap and SmartMove™ together when mirroring

In general, when mirroring two thin provisioned LUNs, it better to turn on both FlashSnap and
SmartMove™. After a transient array failure – due to a power outage at the SAN fabric level, for

41/45

DCO among all volumes in a diskgroup. These configurations are beyond the scope of this document;
consult the Storage Foundation FlashSnap documentation to learn more.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

example – the two plexes must be resynchronized so that each contains the same data as the
other (a plex is a Storage Foundation term analogous to a mirror, in this scenario each LUN maps
to one plex). To avoid writing data that is already in sync and triggering storage allocations on the
thin array, FlashSnap resyncs only the changed blocks and SmartMove™ resyncs only the
occupied blocks. But why use both?

One reason is granularity. FlashSnap tracks regions of a volume, not individual blocks. If a single
block is written to, FlashSnap will flag the whole region around that block for resync (usually 64k).
If the rest of that 64k region contained no files, SmartMove™ complements by just resyncing the
single block. That avoids triggering allocations that could occur if the whole region was resync’d.

A second reason is deletions. If a file is modified, then subsequently deleted (or kept but rewritten
elsewhere, an operation certain applications frequently use), FlashSnap will flag the whole region
for resync. If SmartMove™ is also used, none of the region need be resync’d, so the array would
not allocate any new storage.

The above cases illustrate how SmartMove™ complements FlashSnap. When does FlashSnap
complement SmartMove™?

The first case is when the file system is not available. VxFS must be online and mounted for
SmartMove™ to provide information from the file system to the volume manager. That will
usually, but not always be the case. If the file system is not yet mounted, as happens in some
recovery sequences, FlashSnap avoids a full resync and the resulting allocations.

The second case is when an application has large, pre-allocated files that are mostly empty.
SmartMove™ conservatively treats those as completely full. In this case, FlashSnap is more
granular than SmartMove™, since it tracks changed regions since the last resync operation.
FlashSnap does not know, nor does it need to know, to which files or to which portions of files
those regions correspond. It simply flags the region for resync. Regions of a pre-allocated file that
were modified or that were newly written will be flagged for resync. Empty regions that did not
receive any writes will not be flagged, and those empty regions will not be resynced during
recovery, so the array will not need to unnecessarily allocate storage to those empty regions.

Command Example: Restricting I/O to Physically Allocated Storage

This example follows the scenario described in “DST with a Thin Provisioning Tier”. To recap:

A single, thin provisioned volume has run out of physical storage. To keep the application up and
running, add a second volume to the file system from a second array (since the original array has
no more physical storage). Set Dynamic Storage Tiering (DST) policies to restrict I/O activity to
only those blocks on the LUN that actually backed by physical storage. Then, once new storage
is added to the originally array, move any new data from the second volume back to the first, and
then remove the second volume.

This example assumes that the file system was not built on a volume set. If it was, skip steps 1a
through 1h. Conventions and notes given at the beginning of the Appendix apply here as well,
i.e., operating system differences, path locations, etc. To illustrate SF’s hardware-neutral nature,
the second LUN is from a Hitachi array. The second volume’s name is ‘catchvol’ as its purpose,
conceptually though not literally, is to catch “overflow” I/O (extending writes or new files) which
the first volume cannot hold. The object relationships are illustrated below.

42/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Figure 16: Object Relationships and Names.

VxFS and VxVM 4.1 or higher, and a Storage Foundation Enterprise license49, is required.

1. Convert the existing VxFS file system to a multi-volume file system. The file system is
mounted at /data, the volume is thinvol, which is in diskgroup datadg.

1a. Determine the version of the volume's diskgroup:
vxdg list datadg | grep version: | awk '{ print $2 }'
105
1b. If the version is less than 110, upgrade the diskgroup:
vxdg upgrade datadg
1c. Determine the disk layout version of the file system:
vxupgrade /data
Version 5
1d. If the disk layout is version is less than 6, upgrade to Version 6 or 750:

43/45

49 Storage Foundation (SF) Cluster File System, SF Cluster File System HA, SF for Oracle RAC, SF for
Oracle Enterprise, SF for DB2 Enterprise, and SF for Sybase Enterprise all provide the “Enterprise” level
license needed.

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

vxupgrade -n 7 /data
1e. Unmount the file system:
umount /data
1f. Convert the volume into a volume set. The volume set name vset1 is used as an
example:
vxvset -g datadg make vset1 thinvol
1g. Edit the file [/etc/filesystems on AIX; /etc/fstab on HP-UX and on Linux; /etc/vfstab on
Solaris] to replace the volume device name, thinvol, with the volume set name, vset1.
1h. Mount the file system.
mount -t vxfs /dev/vx/dsk/datadg/vset1 /data
1i. Add the second LUN to the existing disk group. The operating system-specific step
of labeling/formatting the LUN for OS recognition is not shown51.
vxdisksetup –i HDS99600_1 privlen=32m
vxdisk init HDS99600_1
vxdg -g datadg adddisk HDS99600_1
1j. Create and add a second volume comprised of the second LUN to the volume set:
vxassist -g datadg make catchvol 40g HDS99600_1
vxvset -g datadg addvol vset1 catchvol
1k. Add the new volume to the file system:
fsvoladm add –f metadataok /data catchvol 40g

2. Set the policies for all new allocations to come from the second volume, then verify:

fsapadm define /data datapolicy catchvol
fsapadm define /data metadatapolicy catchvol
fsapadm assignfs /data datapolicy metadatapolicy
fsapadm list /data

3. Add physical storage to the original LUN:

Not shown, as this varies by array vendor.

4. Remove the policies:

fsapadm delete /data datapolicy
fsapadm delete /data metadatapolicy

5. Remove the second LUN52. The first command automatically moves any data on the
second LUN to the first LUN:

fsvoladm remove /data catchvol
vxvset –g datadg rmvol vset1 catchvol
vxassist –g datadg remove volume catchvol
vxdg -g datadg rmdisk HDS99600_1
vxdisk rm HDS99600_1

44/45

50 Version 7 is only available with VxFS version 5.0 or higher.
51 The privlen=32m argument in step 1a is not strictly necessary, but it is a recommended best practice.
This is not needed with Storage Foundation version 5.0 or higher, since 32MB is the default.
52 A final, optional step – removing the original volume from the volume set – is not shown. Administrators
who have needed to use this procedure will presumably want to keep the volume set capability in case they
should need it again! However, this can be done; the steps are described in the VxFS File System
Administrator’s Guide, Chapter 9: Multi-volume File Systems:
http://ftp.support.veritas.com/pub/support/products/FileSystem_UNIX/290254.pdf

Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

http://ftp.support.veritas.com/pub/support/products/FileSystem_UNIX/290254.pdf

45/45
Veritas™ Storage Foundation and Thin Provisioning: Rationale, Configuration and Benefits
February, 2008

Defragmenting before Migration – Pros and Cons

The comments here apply to all file systems that provide a defragmentation utility, such as NTFS
and VxFS. They are not specific to VxFS.

Defragmentation is not appropriate for most thin provisioning systems, because the act of
defragmenting moves data within a LUN, which in turn triggers allocations of storage within the
array. The result is lower utilization of the thinly provisioned storage.

However, putting those costs aside, a defragmented file system is better than a fragmented file
system, even in a thinly provisioned LUN. A defragmented file system groups related data
together, improving performance. A defragmented file system uses less metadata, which in turn
uses both less storage and less memory. So, running ‘one last’ defragmentation before migrating
to thin storage has clear benefits.

Yet defragmenting has costs. It takes clock time: defragmentation can take many hours for a file
system with millions of files. It takes staff time: because the time to defragment is hard to predict,
progress must be periodically checked. And some applications, like commercial databases,
typically see little benefit from defragmentation53.

Counterarguments are that defragmentation does not cause downtime for either VxFS or NTFS; it
is run online, with applications using the file system all the while. And since both VxFS and NTFS
have a ‘cancel’ mechanism if defrag is taking too long, these costs can be capped. VxFS also lets
the user specify a time limit up front.

Defragmentation automatically happens using the “Reclaim before move” and the “Multi-volume
file system” method, during the shrink step and fsapadm enforcefile step, respectively. It does not
need to be run separately.

Ultimately, the decision to defrag before migration remains a judgment call.

The authors wish to thank Mike Root, Laura Shepard, and Thomas Cornely for their assistance.

Legal Notice and Safe Harbor

Any forward-looking indication of plans for products is preliminary and all future release dates are
tentative and are subject to change. Any future release of the product or planned modifications to
product capability, functionality or feature are subject to ongoing evaluation by Symantec, and
may or may not be implemented and should not be considered firm commitments by Symantec
and should not be relied upon in making purchasing decisions.

53 Also, some file systems are just not very fragmented. NTFS provides a simple “yes/no” recommendation
on whether the file system is fragmented enough to bother defragmenting. A similar “yes/no”
recommendation script for VxFS is available here:
http://www.eng.auburn.edu/pub/mail-lists/ssastuff/vxdefrag-pl.html

http://www.eng.auburn.edu/pub/mail-lists/ssastuff/vxdefrag-pl.html

