Veritas[™] Cluster Server Agent for EMC SRDF Installation and Configuration guide

Windows Server 2003, Windows Server 2008

5.1

Veritas Cluster Server Agent for EMC SRDF Installation and Configuration guide

The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of the agreement.

Agent version: 5.1

Legal Notice

Copyright © 2008 Symantec Corporation.

All rights reserved.

Symantec, the Symantec Logo, Veritas, and Veritas Storage Foundation are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202.

Symantec Corporation 20330 Stevens Creek Blvd. Cupertino, CA 95014

www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled with this Symantec product. Such third-party software is licensed separately by its copyright holder.

Windows is a registered trademark of Microsoft Corporation.

Technical support

For technical assistance, visit

http://www.symantec.com/business/support/index.jsp

and select phone or email support. Use the Knowledge Base search feature to access resources such as TechNotes, product alerts, software downloads, hardware compatibility lists, and our customer email notification service.

Contents

Chapter 1	Introducing the Veritas agent for EMC SRDF7
	About the agent for EMC SRDF7Supported software and hardware8Typical EMC SRDF setup in a VCS cluster8EMC SRDF agent operations9About the EMC SRDF agent's online operation10About dynamic swap support for the EMC SRDF agent11
Chapter 2	Installing and removing the agent for EMC SRDF
	Before you install the agent for SRDF13Installing the agent for SRDF13Removing the agent for SRDF14
Chapter 3	Configuring the agent for EMC SRDF17Configuration concepts for the EMC SRDF agent17Resource type definition for the EMC SRDF agent17Attribute definitions for the SRDF agent18Sample configuration for the EMC SRDF agent19Before you configure the agent for SRDF19About cluster heartbeats20About configuring system zones in replicated data clusters21About preventing split-brain22Configuring the agent for SRDF22Configuring the agent manually in a global cluster24Setting the OnlineTimeout attribute for the SRDF resource24Additional configuration considerations for the SRDF agent25
Chapter 4	Managing and testing clustering support for EMC SRDF
	Typical test setup for the EMC SRDF agent

6 | Contents

Performing a disaster test	
Performing the failback test	
Failure scenarios for EMC SRDF	
Site disaster	
All host or all application failure	
Replication link failure	
Split-brain in a SRDF environment	33
Index	35

Chapter

Introducing the Veritas agent for EMC SRDF

This chapter includes the following topics:

- About the agent for EMC SRDF
- Supported software and hardware
- Typical EMC SRDF setup in a VCS cluster
- EMC SRDF agent operations

About the agent for EMC SRDF

The Veritas agent for EMC SRDF provides support for application failover and recovery. The agent provides this support in environments that use SRDF to replicate data between EMC Symmetrix arrays.

The agent monitors and manages the state of replicated EMC Symmetrix devices that are attached to VCS nodes. The agent ensures that the system that has the SRDF resource online also has safe and exclusive access to the configured devices.

You can use the agent in replicated data clusters and in global clusters that run VCS.

The agent supports SRDF in the synchronous and asynchronous modes; the agent does not support semi-synchronous and Adaptive Copy. The agent does not require special configuration for SRDF/A support; the agent detects SRDF/A backed devices and manages their failover accordingly.

The agent also supports dynamic SRDF (role swap). If all devices in a given device group are configured for dynamic SRDF, the agent attempts a role swap.

Supported software and hardware

The EMC SRDF agent supports SFW HA 5.1.

The agent supports SYMCLI versions that EMC recommends for the firmware on the array.

The agent supports SRDF on all microcode levels on all EMC Symmetrix arrays.

This support only exists if the host, HBA, and array combination is in EMC's hardware compatibility list.

You must obtain an SRDF Consistency Groups license for taking consistent snapshots with the SRDF agent. You must also create a consistency group on all nodes in the cluster.

Typical EMC SRDF setup in a VCS cluster

Figure 1-1 displays a typical cluster setup in a SRDF environment.

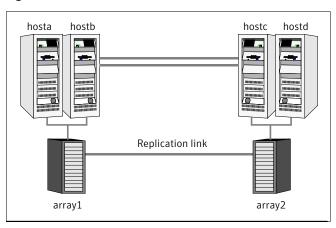


Figure 1-1Typical clustering setup for the agent

Clustering in a SRDF environment typically consists of the following hardware infrastructure:

- The primary array (array1) has one or more R1 hosts. A Fibre Channel or SCSI directly attaches these hosts to the EMC Symmetrix array that contains the SRDF R1 devices.
- The secondary array (array2) has one or more R2 hosts. A Fibre Channel or SCSI directly attaches these hosts to a EMC Symmetrix array that contains the SRDF R2 devices. The R2 devices are paired with the R1 devices in the R1

array. The R2 hosts and arrays must be at a significant distance to survive a disaster that may occur at the R1 side.

- Network heartbeating between the two data centers to determine their health; this network heartbeating could be LLT or TCP/IP.
 See "About cluster heartbeats" on page 20.
- In a replicated data cluster environment, all hosts are part of the same cluster. You must connect them with the dual and dedicated networks that support LLT.

In a global cluster environment, you must attach all hosts in a cluster to the same EMC Symmetrix array.

EMC SRDF agent operations

The VCS agent for EMC SRDF monitors and manages the state of replicated Symmetrix devices that are attached to VCS nodes.

The agent performs the following functions:

online	If the state of all local devices is read-write enabled (RW), the agent creates a lock file on the local host. The lock file indicates that the resource is online. This operation makes the devices writable for the application.
	If one or more devices are in the write-disabled (WD) state, the agent runs a <code>symrdf</code> command to enable read-write access to the devices.
	See "About the EMC SRDF agent's online operation" on page 10.
offline	Removes the lock file on the device. The agent does not run any SRDF commands because taking the resource offline is not indicative of the intention to give up the devices.
monitor	Verifies that the lock file exists. If the lock file exists, the monitor entry point reports the status of the resource as online. If the lock file does not exist, the monitor entry point reports the status of the resource as offline.
open	Removes the lock file on the host where the entry point is called. This operation prevents potential concurrency violation if the service group fails over to another node.
	Note that the agent does not remove the lock file if the agent was started after running the following command:
	hastop<-all -local> -force

10 Introducing the Veritas agent for EMC SRDF EMC SRDF agent operations

clean	Determines if it is safe to fault the resource if the online entry point fails or times out. The agent checks if a management operation was in progress when the online thread timed out. If the operation was killed, the devices are left in an unusable state.
info	Reports the device state to the VCS interface. This entry point can be used to verify the device state and to monitor dirty track trends.
action	Performs a symrdf update from the R2 side to merge any dirty tracks from the R2 to the R1.

About the EMC SRDF agent's online operation

If the state of all local devices is read-write enabled (RW), the agent creates a lock file on the local host to indicate that the resource is online.

If one or more devices are in the write-disabled (WD) state, the agent runs a symrdf command to enable read-write access to the devices.

Depending on SRDF/S and SRDF/A, the states can be different as follows:

- For R2 devices in the SYNCHRONIZED or CONSISTENT state, the agent runs the symrdf failover command to make the devices writable.
- For R1 devices in the FAILED OVER or R1 UPDATED state, the agent runs the symrdf failback command to make the devices writable.
- For all devices in the PARTITIONED state, the agent runs the symrdf command to make the devices writable.

The agent runs the command only if the AutoTakeover attribute is set to 1 and if there are no dirty tracks on the local device. Dirty tracks indicate that an out-of-order synchronization was in progress when the devices became partitioned, rendering them inconsistent and unusable. If dirty tracks exist, the online entry point faults on timeout.

- For R1 devices in the UPDINPROG state, the agent runs a symrdf command only after the devices transition to the R1 UPDATED state.
- For R2 devices in the SYNCINPROG state, the agent runs a symrdf command only after the devices transition to the SYNCHRONIZED or CONSISTENT state.

The agent does not run any command if there is not enough time remaining for the entry point to complete the command.

See "Setting the OnlineTimeout attribute for the SRDF resource" on page 24.

About dynamic swap support for the EMC SRDF agent

The agent supports the SRDF/S and SRDF/A dynamic swap capability. The agent performs a swap for the healthy arrays that are configured for dynamic swap when a service group fails over between the arrays. If one array is down, a unilateral read-write enable occurs. The agent fails over the device groups that are not configured for dynamic swap using the following command: symrdf failover. The command enables read-write on the R2 device.

The agent checks the following criteria before determining if a swap occurs:

- All devices in the device group are configured as dynamic devices.
- Dynamic RDF is configured on the local Symmetrix array.
- The SYMCLI version is 5.4 or later.
- The microcode is level 5567 or later.

The commands for online are different for SRDF/S dynamic swap and SRDF/A dynamic swap as follows:

- For SRDF/S, for R2 devices in the SYNCHRONIZED state, the agent runs the symrdf failover -establish command.
- For SRDF/A, for R2 devices in the CONSISTENT state, the agent runs the symrdf -force failover command. If consistency is enabled, the agent runs the symrdf disable command. The agent then issues the symrdf swap command to do the role-swap and the establish command to re-establish the replication, and re-enables the consistency.

Dynamic swap does not affect the ability to perform fire drills.

12 | Introducing the Veritas agent for EMC SRDF EMC SRDF agent operations

Chapter

Installing and removing the agent for EMC SRDF

This chapter includes the following topics:

- Before you install the agent for SRDF
- Installing the agent for SRDF
- Removing the agent for SRDF

Before you install the agent for SRDF

Set up your cluster. For information about installing and configuring VCS, see the *Veritas Cluster Server Installation Guide*.

Set up replication and the required hardware infrastructure.

See "Typical EMC SRDF setup in a VCS cluster" on page 8.

Installing the agent for SRDF

If you did not install the SRDF when you installed Veritas Storage Foundation for Windows High Availability (SFW HA), follow these instructions to install the agent.

You must install the EMC SRDF agent on each node in the cluster. In global cluster environments, install the agent on each node in each cluster. These instructions assume that you have already installed SFWHA.

To install the agent for SRDF

- 1 Open the Windows Control Panel and click Add or Remove Programs.
- 2 Click the SFW HA Server Components entry and click Change.

- 3 On the installer screen, click Add or Remove and click Next.
- 4 In the Option Selection dialog box, select the agent and click Next.
- **5** The installer validates the system for installation.

If a system is rejected, the Comments column displays the cause of rejection. Highlight the system to view detailed information about the failure in the Details box. Resolve the error, highlight the node in the selected systems list, and click **Validate Again**.

After all the systems are accepted, click Next.

- **6** An informational message appears if you selected the DMP option. Review the information and click **OK** to continue.
- 7 Review the summary of your selections and click Next.
- 8 Click **Update** to start the installation.
- **9** The installer displays the status of installation. After the installation is complete, review the installation report and click **Next**.
- 10 Click Finish.

Removing the agent for SRDF

This section describes steps for uninstalling the agent. Do not attempt to remove the agent if service groups accessing the shared storage are online.

To remove the agent SRDF

- 1 Open the Windows Control Panel and click Add or Remove Programs.
- 2 Click the VSFW HA Server Components entry and click Remove.
- 3 Review the Welcome page and click Next.
- 4 In the Option Selection dialog box, select the SRDF agent and click Next.
- **5** The installer validates the system for uninstallation.

If a system is rejected, the Comments column displays the cause of rejection. Highlight the system to view detailed information about the failure in the Details box. Resolve the error, highlight the node in the selected systems list, and click **Validate Again**.

After all the systems are accepted, click Next.

- 6 Review the summary of your selections and click Uninstall.
- 7 The installer displays the status of uninstallation.

- 8 After the uninstallation is complete, review the report and click **Next**.
- 9 Click Finish.

Note: For Win IA64 and Win x64 architectures, you must manually delete the agent directory if it is not removed after the uninstallation.

16 | Installing and removing the agent for EMC SRDF Removing the agent for SRDF

Chapter

Configuring the agent for EMC SRDF

This chapter includes the following topics:

- Configuration concepts for the EMC SRDF agent
- Before you configure the agent for SRDF
- Configuring the agent for SRDF

Configuration concepts for the EMC SRDF agent

Review the resource type definition and the attribute definitions for the agent.

Resource type definition for the EMC SRDF agent

The SRDF resource type represents the EMC SRDF agent in VCS.

```
type SRDF (
    static str ArgList[] = { SymHome, GrpName, DevFOTime,
    AutoTakeover, SplitTakeover }
    static int NumThreads = 1
    static int ActionTimeout = 180
    static int OfflineMonitorInterval = 0
    static int MonitorInterval = 300
    static int RestartLimit = 1
    static keylist SupportedActions = { update }
    NameRule = resource.GrpName
    str SymHome = "C:\\Program Files\\EMC\\SYMCLI\\bin"
    str GrpName
    int DevFOTime = 2
```

```
int AutoTakeover = 1
int SplitTakeover = 1
temp str VCSResLock
```

Attribute definitions for the SRDF agent

)

Review the description of the agent attributes.

Required attributes

You must assign values to required attributes.

GrpName Name of the Symmetrix Device Group that the agent manages. Specify the name of a device group. Do not specify the name of a composite group.

 $Type\mbox{-}dimension:\mbox{string-scalar}$

Optional attributes

Configuring these attributes is optional.

SymHome	Path to the bin directory that contains the Symmetrix command line interface.
	Type-dimension: string-scalar
	Default is C:\Program Files\EMC\SMYCLI\bin.
DevFOTime	Average time in seconds that is required for each device in the group to fail over. This value helps the agent to determine whether it has adequate time for the online operation after waiting for other device groups to fail over. If the online operation cannot be completed in the remaining time, the failover does not proceed.
	Type-dimension: integer-scalar
	Default is 2 seconds per device.
AutoTakeover	A flag that determines whether the agent performs a read-write enable on partitioned devices in the write-disabled state during a failover.
	Type-dimension: integer-scalar
	Default is 1, which means that the agent performs a read-write enable if devices are consistent.

SplitTakeover A flag that determines whether the agent permits a failover to R2 devices in the Split state. The value 0 indicates that the agent does not permit a failover to R2 devices in the Split state. The value 1 indicates that the agent permits a failover to R2 devices in the Split state if the devices are read-write enabled. The attribute has no effect on failing over to a host attached to R1 devices.

Set the attribute to 0 to minimize the risk of data loss on a failover to devices that may not be in synch.

Type-dimension: integer-scalar

Default is 1.

Internal attributes

These attributes are for internal use only. Do not modify their values.

VCSResLock The agent uses the VCSResLock attribute to guarantee serialized management in case of a parallel application. Type-dimension: temporary string

Sample configuration for the EMC SRDF agent

Figure 3-1 shows the dependency graph for a VCS service group with a resource of type SRDF. The VMDg resource depends on the SRDF resource.

Figure 3-1 Sample configuration for the SRDF agent

OnlineTimeout = $((n_{devices} X d_{failovertime}) + \varepsilon)$

A resource of type SRDF may be configured as follows in main.cf:

```
SRDF SG-SRDF (
GrpName = "SQLDG"
)
```

Before you configure the agent for SRDF

Before you configure the agent, review the following information:

 Review the configuration concepts, which describe the agent's type definition and attributes.

See "Configuration concepts for the EMC SRDF agent" on page 17.

- Verify that you have installed the agent on all systems in the cluster.
- Verify the hardware setup for the agent.
 See "Typical EMC SRDF setup in a VCS cluster" on page 8.
- Make sure that the cluster has an effective heartbeat mechanism in place. See "About cluster heartbeats" on page 20. See "About preventing split-brain" on page 22.
- Set up system zones in replicated data clusters.
 See "About configuring system zones in replicated data clusters" on page 21.
- Verify that the clustering infrastructure is in place.
 - If you plan to configure the agent in a global cluster, make sure the global service group for the application is configured.

About cluster heartbeats

In a replicated data cluster, ensure robust heartbeating by using dual, dedicated networks over which the Low Latency Transport (LLT) runs. Additionally, you can configure a low-priority heartbeat across public networks.

In a global cluster, VCS sends ICMP pings over the public network between the two sites for network heartbeating. To minimize the risk of split-brain, VCS sends ICMP pings to highly available IP addresses. VCS global clusters also notify the administrators when the sites cannot communicate.

In global clusters, the VCS Heartbeat agent sends heartbeats directly between the Symmetrix arrays if the Symmetrix ID of each array is known. This heartbeat offers the following advantages:

- The Symmetrix heartbeat shows that the arrays are alive even if the ICMP heartbeats over the public network are lost. So, VCS does not mistakenly interpret this loss of heartbeats as a site failure.
- Heartbeat loss may occur due to the failure of all hosts in the primary cluster. In such a scenario, a failover may be required even if the array is alive. In any case, a host-only crash and a complete site failure must be distinguished. In a host-only crash, only the ICMP heartbeat signals a failure by an SNMP trap. No cluster failure notification occurs because a surviving heartbeat exists. This trap is the only notification to fail over an application.
- The heartbeat is then managed completely by VCS. VCS reports that the site is down only when the remote array is not visible by the symrdf ping command.

About configuring system zones in replicated data clusters

In a replicated data cluster, you can prevent unnecessary SRDF failover or failback by creating system zones. VCS attempts to fail over applications within the same system zone before failing them over across system zones.

Configure the hosts that are attached to an array as part of the same system zone to avoid unnecessary failover.

Figure 3-2 depicts a sample configuration where hosta and hostb are in one system zone, and hostc and hostd are in another system zone.

Use the SystemZones attribute to create these zones.

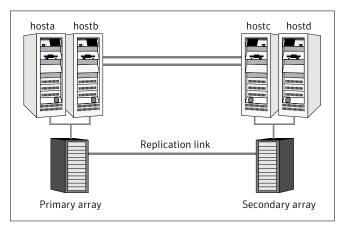


Figure 3-2 Example system zone configuration

Modify the SystemZones attribute using the following command:

C: \> hagrp -modify grpname SystemZones hosta 0 host
b 0 hostc 1 hostd 1

The variable grpname represents the service group in the cluster.

Global clusters do not require system zones because failover occurs on a remote cluster if all local targets have been exhausted.

When the SRDF runs on R2 devices, SRDF does not synchronize data back to the R1 automatically. You must update out-of-synch tracks manually. Monitor the number of out-of-synch tracks by viewing the ResourceInfo attribute of an online SRDF resource. If the value is too high, update tracks to the R1 using the update action. The update action is defined as a supported action in the SRDF resource type.

About preventing split-brain

Split-brain occurs when all heartbeat links between the primary and secondary hosts are cut. In this situation, each side mistakenly assumes that the other side is down. You can minimize the effects of split-brain by ensuring that the cluster heartbeat links pass through a similar physical infrastructure as the replication links. When you ensure that both pass through the same infrastructure, if one breaks, so does the other.

Sometimes you cannot place the heartbeats alongside the replication links. In this situation, a possibility exists that the cluster heartbeats are disabled, but the replication link is not. A failover transitions the original R1 to R2 and vice-versa. In this case, the application faults because its underlying volumes become write-disabled, causing the service group to fault. VCS tries to fail it over to another host, causing the same consequence in the reverse direction. This phenomenon continues until the group comes online on the final node. You can avoid this situation by setting up your infrastructure such that loss of heartbeat links also mean the loss of replication links.

Configuring the agent for SRDF

You can adapt most clustered applications to a disaster recovery environment by:

- Converting their devices to SRDF devices
- Synchronizing the devices
- Adding the EMC SRDF agent to the service group

After configuration, the application service group must follow the dependency diagram.

Configuring the agent manually in a global cluster

Configuring the agent manually in a global cluster involves the following tasks:

To configure the agent in a global cluster

- **1** Start Cluster Manager and log on to the cluster.
- 2 If the agent resource type (SRDF) is not added to your configuration, add it. From the Cluster Explorer **File** menu, choose **Import Types** and select:

Program Files\Veritas\Cluster Server\conf\config\SRDFTypes.cf

- 3 Click Import.
- **4** Save the configuration.
- 5 Add a resource of type SRDF at the bottom of the service group.

- **6** Configure the attributes of the SRDF resource.
- 7 If the service group is not configured as a global group, configure the service group using the Global Group Configuration Wizard.

See the Veritas Cluster Server User's Guide for more information.

- 8 Change the ClusterFailOverPolicy from the default, if necessary. Symantec recommends keeping the default, which is Manual, to minimize the chance of failing over on a split-brain.
- **9** Repeat step 5 through step 8 for each service group in each cluster that uses replicated data.
- 10 Configure the Symm heartbeat on each cluster.
 - From Cluster Explorer Edit menu, choose **Configure Heartbeats**.
 - On the Heartbeats Configuration dialog box, enter the name of the heartbeat (Symm).
 - Select the check box next to the name of the cluster to add it to the cluster list for the heartbeat.
 - Click the icon in the Configure column to open the Heartbeat Settings dialog box.
 - Specify as the value of the Arguments attribute the Symmetrix ID of the array in the other cluster. Set the value of the AYARetryLimit attribute for this heartbeat to 1 less than the value for the ICMP heartbeat. Specify SymmHome as the second argument with a value of 1.
 - Click OK.
 - Symm heartbeat monitors only one array using the Symmetrix ping utility. You must configure additional heartbeats if you use devices from more than one array.

To configure additional heartbeats:

- Create a copy of <your installation directory>\cluster server\bin\hb\Symm folder using a different name under <your installation directory>\cluster server\bin\hb*, say Symm_1.
- Open the VCS Java GUI to configure Symm_1 heartbeat.
 The parameters are similar to Symm heartbeats. Follow 10 for more information on configuring Symm heartbeats in order to add values.

Note: The Disaster Recovery wizard configures the required settings for the SRDF resource in the VCS application service group. Optional settings are left in the default state. The wizard creates a complete disaster recovery setup using the SRDF replication and validates the replication setup. For information on using the Disaster Recovery wizard, see the Solutions guides chapters on disaster recovery.

Configuring the agent manually in a replicated data cluster

Configuring the agent manually in a replicated data cluster involves the following tasks:

To configure the agent in a replicated data cluster

- **1** Start Cluster Manager and log on to the cluster.
- 2 If the agent resource type (SRDF) is not added to your configuration, add it. From the Cluster Explorer File menu, choose **Import** Types and select:

Program Files\Veritas\Cluster Server\conf\config\SRDFTypes.cf.

- 3 Click Import.
- **4** Save the configuration.
- **5** In each service group that uses replicated data, add a resource of type SRDF at the bottom of the service group.
- **6** Configure the attributes of the SRDF resource. Note that some attributes must be localized to reflect values for the hosts that are attached to different arrays.
- 7 Set the SystemZones attribute for the service group to reflect which hosts are attached to the same array.

Setting the OnlineTimeout attribute for the SRDF resource

Set the OnlineTimeout attribute for the SRDF resource so that its entry points do not time out, or they automatically restart if they timed out.

To set the OnlineTimeout attribute

1 For each SRDF resource in the configuration, use the following formula to calculate an appropriate value for the OnlineTimeout attribute:

OnlineTimeout = ((n devices X d_{failovertime}) + ε)

■ n_{devices} represents the number of devices in a device group.

- d_{failovertime} represents the time taken to failover a device.
- n_{devicegroups} represents the total number of device groups that might fail over simultaneously.
- The epsilon is for the command instantiation overhead. You can set it to any value based on your setup

To set the Online Timeout attribute for a single device group (typically the case for SRDF), multiply the number of devices in the device group with the time taken to failover a device (default = 2 seconds) and add it to the value of epsilon.

For example: if you have a single device group that consists of 5 devices and the time taken to failover a single device is 50 seconds, set the OnlineTimeout attribute to [(5*50)+10] seconds. The value of the epsilon here is equal to 10 seconds. Thus, the OnlineTimeout attribute is equal to 260 seconds.

To set the Online Timeout attribute for multiple device groups (currently not supported by SRDF), calculate the OnlineTimeout attribute for all device groups and set the OnlineTimeout attribute to at least the amount of time the largest device group takes to fail over.

2 If the resulting value seems excessive, divide it by two for every increment in the value of the RestartLimit attribute.

To set the OnlineTimeout attribute using the script

• Run the perl script to get recommendations for VCS attribute values.

C:\Program Files\Veritas\Cluster Server\bin\SRDF\sigma.pl

Run the script on a node where VCS is running and has the SRDF agent configured.

The sigma calculator adds 10 seconds to the value for each device group to compensate for the overhead of launching an appropriate symrdf command. Specify another value to the sigma script if the instantiation takes shorter or longer.

The script runs on the assumption that the VCS program manages all devices in the array. Other operations outside of VCS that hold the array lock might delay the online operation unexpectedly.

Additional configuration considerations for the SRDF agent

Consider the following settings for configuring the SRDF agent:

Set the OnlineTimeout attribute for the SRDF resource so that its entry points do not time out, or they automatically restart if they timed out. See "Setting the OnlineTimeout attribute for the SRDF resource" on page 24.

■ In global clusters, the value of the AYARetryLimit for the Symm heartbeat must be shorter than the ICMP retry limit. This setting allows VCS to detect an array failure first and does not confuse a site failure with an all host failure.

Managing and testing clustering support for EMC SRDF

This chapter includes the following topics:

- Typical test setup for the EMC SRDF agent
- Testing service group migration
- Testing host failure
- Performing a disaster test
- Performing the failback test
- Failure scenarios for EMC SRDF

Typical test setup for the EMC SRDF agent

A typical test environment includes the following characteristics:

- Two hosts (hosta and hostb) are attached to the R1 EMC Symmetrixarray.
- Two hosts (hostc and hostd) are attached to the R2 EMC Symmetrix array.
- The application runs on hosta and devices in the local array are read-write enabled in the SYNCHRONIZED state.
- You may add an optional SRDF link heartbeat.
- A replicated data cluster has two dedicated heartbeat links; a global cluster has one network heartbeat and an optional SRDF replication link heartbeat.

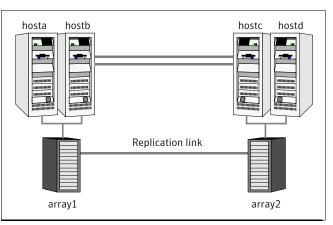


Figure 4-1 depicts a typical test environment.

Testing service group migration

Verify the service group can migrate to different hosts in the cluster and across clusters.

To perform the service group migration test

1 Migrate the service group to a host that is attached to the same array.

Do the following:

- In the Service Groups tab of the Cluster Explorer configuration tree, right-click the service group.
- Click Switch To, and click the system that is attached to the same array (hostb) from the menu.
 The service group comes online on hostb and local volumes remain in the RW/SYNCHRONIZED state.
- 2 Migrate the service group to a host that is attached to a different array. Do the following:
 - In the Service Groups tab of the Cluster Explorer configuration tree, right-click the service group.
 - Click **Switch To**, and click the system that is attached to the another array (hostc) from the menu.

The service group comes online on hostc and volumes there transition to the RW/FAILED OVER state.

• Accumulate dirty tracks on the R2 side and update them back on the R1:

hares -action srdf_res_name update -sys hostc

The variable *srdf_res_name* represents the name of the SRDF resource.

3 After the devices transition to R1 UPDATED state, migrate the service group back to its original host.

Do the following:

- In the Service Groups tab of the Cluster Explorer configuration tree, right-click the service group.
- Click Switch To, and click the system on which the group was initially online (hosta).

The group comes online on hosta. The devices return to the RW/SYNCINPROG state at the array that is attached to hosta and hostb, and then eventually transition to the SYNCHRONIZED state.

Testing host failure

In this scenario, the host where the application runs is lost. Eventually all the hosts in the system zone or cluster are lost.

To perform the host failure test

1 Halt or shut down the host where the application runs (hosta).

The service group fails over to hostb and devices are in the RW/SYNCHRONIZED state.

2 Halt or shut down hostb.

In a replicated data cluster, the group fails over to hostc or hostd depending on the FailOverPolicy in the cluster.

In a global cluster, a cluster down alert appears and gives you the opportunity to fail over the service group manually.

In both environments, the devices transition to the RW/FAILED OVER state and start on the target host.

- **3** Reboot the two hosts that were shut down.
- **4** Switch the service group to its original host when VCS starts.

Do the following:

■ In the **Service Groups** tab of the Cluster Explorer configuration tree, right-click the service group.

■ Click **Switch To**, and click the system on which the service group was initially online (hosta).

The service group comes online on hosta and devices transition to the SYNCINPROG state and then to the SYNCHRONIZED state.

Performing a disaster test

Test how robust your cluster is in case of a disaster.

To perform a disaster test

1 Shut down all hosts on the source side and shut down the source array.

If you can not shut down the R1 Symmetrix, disconnect the ESCON link between the two arrays and simultaneously shut down the hosts. This action mimics a disaster scenario from the point of view of the R2 side.

- 2 In a replicated data cluster, the service group fails over to hostc or hostd in the following conditions:
 - All devices were originally in the SYNCHRONIZED state.
 - No synchronization was in progress at the time of disaster.
- **3** In a global cluster, the administrator is notified of the failure. The administrator can then initiate the failover.

Performing the failback test

You can set up your cluster for a failback test.

The failback test verifies the application can fail back to its original host after a failover to a remote site.

To perform a failback test

- 1 Reconnect the ESCON cable and reboot the original R1 hosts.
- 2 Take the service group offline.

If you run this test in a replicated data cluster, type the following command from any host:

hagrp -offline grpname -any

If you run the test in a global cluster, type the command from hostc or hostd.

3 After the service group goes offline, manually resynchronize the devices, which you can do only if you write-disable both sides. Type:

```
symrdf -g device_group restore
```

The variable device_group represents the name of the RDF device group at the R2 side. The restore command determines which tracks to merge between the R1 and R2 arrays and initiates the resynchronization. The operation of this command write disables both sides; use this command only when a brief downtime is acceptable.

4 Bring the service group online at the R1 side. Type:

hagrp -online grpname -sys hosta

The devices synchronize, and the environment state becomes the same as when the test began.

Failure scenarios for EMC SRDF

Review the failure scenarios and agent behavior in response to failure.

Site disaster

In a total site failure, all hosts and the array are completely disabled, either temporarily or permanently.

In a replicated data cluster, site failure is detected the same way as a total host failure, that is, the loss of all LLT heartbeats.

In a global cluster, VCS detects site failure by the loss of both the ICMP and Symm heartbeats. Make sure that a site failure is not confused with an all-host failure. Set the AYARetryLimit for the Symm heartbeat to be shorter than the ICMP retry limit. With such a setting, the failure of the Symmetrix array is detected first.

A total disaster renders the devices on the surviving array in the PARTITIONED state. If the AutoTakeover attribute is set to its default value of 1, the online entry point runs the symrdf_rw command. If the attribute is set to 0, no takeover occurs and the online entry point times out and faults.

The online entry point detects whether any synchronization was in progress when the source array was lost. Since the target devices are inconsistent until the synchronization completes, the agent does not write-enable the devices, but it times out and faults. You must restore consistent data from a snapshot or tape backup.

All host or all application failure

Even if both arrays are operational, the service group fails over in the following conditions:

- All hosts on the R1 side are disabled.
- The application cannot start successfully on any R1 host.

In replicated data cluster environments, the failover can be automatic, whereas in global cluster environments failover requires user confirmation by default.

VCS serializes symrdf commands to ensure that SRDF does not lock out a command while another command is running.

Make sure that SRDF agent's entry points do not time out. Set the OnlineTimeout and RestartLimit attributes for the SRDF resource to restart automatically if the agent entry points are timed out.

Replication link failure

SRDF detects link failures, monitors changed tracks on devices, and resynchronizes R2 devices if the R1 was active at the time of the link failure.

Before the SRDF takes any action, it waits for the synchronization to complete in the following situations:

- The two arrays are healthy and the link that failed is restored.
- A failover is initiated while synchronization is in progress.

After the synchronization completes, the SRDF runs the symrdf failover command.

If the agent times out before the synchronization completes, the resource faults.

The R2 devices are rendered inconsistent and unusable in the following conditions:

- A failover is initiated due to a disaster at the R1 site, and
- A synchronization was in progress

In this case, even if the AutoTakeover attribute of the agent is set to 1, the agent does not enable read-write access to the devices. Instead, the agent faults. You must restore consistent data to these devices, either from BCV or from a tape backup. Then, you must enable read-write access to the devices manually before they can be used.

If the AutoTakeover attribute is set to 0, the agent does not attempt a symrdf rw_enable, but it times out and faults. If you write-enable the devices manually, the agent can come online after it is cleared.

Split-brain in a SRDF environment

When split-brain occurs in a replicated database cluster, VCS assumes a total disaster because the R1 hosts and array are unreachable. VCS attempts to start the application on the secondary site. Once the heartbeats are restored, VCS stops the applications on one side and restarts the VCS engine (HAD). This action eliminates concurrency violation of the same group being online at two places simultaneously.

You must resynchronize the volumes manually using the symrdf merge or symrdf restore commands.

In a global cluster, you can confirm the failure before failing over the service groups. You can check with the site administrator to identify the cause of the failure. If a fail over mistakenly occurs, the situation is similar to the replicated data cluster case. However, when the heartbeat is restored, VCS does not stop HAD at either site. VCS forces you to choose which group to take offline. You must resynchronize the data manually.

34 | Managing and testing clustering support for EMC SRDF Failure scenarios for EMC SRDF

Index

A

action entry point 9 application failure 32 attribute definitions 18 AutoTakeover attribute 18

С

clean entry point 9 cluster heartbeats 20

D

DevFOTime attribute 18 disaster test 30

Ε

EMC SRDF agent attribute definitions 18 EMC SRDF agent attributes AutoTakeover 18 DevFOTime 18 GrpName 18 SplitTakeover 18 SymHome 18 VCSResLock 19 entry points action 9 clean 9 monitor 9 offline 9 online 9 open 9

F

failback test 30 failure scenarios all application failure 32 all host failure 32 replication link failure 32 total site disaster 31

G

GrpName attribute 18

Н

host failure 32

I

installing the agent Windows systems 13

Μ

migrating service group 28 monitor entry point 9

0

offline entry point 9 online entry point 9 Online Timeout attribute setting 24 open entry point 9

R

replication link failure 32

S

sample configuration 19 service group migrating 28 split-brain handling in cluster 22 handling in clusters 33 SplitTakeover attribute 18 SymHome attribute 18

Т

testing disaster 30 failback 30 total site disaster 31

U

uninstalling the agent Windows systems 14

V

VCSResLock attribute 19