
1 © Veritas Technologies. 2015 1 © Veritas Technologies . 2015

InfoScale Storage &
Media Server
Workloads

Maximise Performance when Storing and Retrieving Large

Amounts of Unstructured Data

​Carlos Carrero

​Colin Eldridge

​Shrinivas Chandukar

2 |

Table of Contents

Chapter

Introduction 01

Hardware Setup 02

Maximize Volume Throughput 03

File System Throughput 04

3 © Veritas Technologies. 2015 3 © Veritas Technologies . 2015

Introduction

+ Document purpose

+ Internet of Things

01

4 © Veritas Technologies. 2015

DOCUMENT PURPOSE

​This document uses a given hardware

configuration as a base framework and

uses it as a guide to find what is the best

possible software configuration.

​Several tests will be performed in order to

understand how the hardware responds to

different I/O demands so bottlenecks can

be identified at different parts of the

architecture.

​As a typical I/O pattern for media

solutions, sequential I/O read will be used.

There are some software tunables like the

number of bytes that are pre-fetched using

read ahead whose values can affect

overall performance. This guide will

evaluate how to make the best choices.

​While this is a high level overview, a very

detailed guide with more information and

examples can be found in this technical

article.

Ways to exercise I/O

Measure performance

Achieve balanced I/O

Identify bottlenecks

File System tuning

​Find a perfect balanced configuration that will get

the most out of your hardware

http://www.symantec.com/connect/articles/veritas-cfs-media-server-workloads-best-practices
http://www.symantec.com/connect/articles/veritas-cfs-media-server-workloads-best-practices

5 © Veritas Technologies. 2015

INTERNET OF THINGS

​Data is at the core of the business and it is

a key asset for the Internet of Things

Market where some analyst predict 30%

CAGR. Even without having to read any

analyst paper, it is quite clear that the

amount of data in any form of video,

images, social information that we are

storing is dramatically being increased

year after year.

​Companies are looking for ways to take

advantages of that huge amount of

information and workloads such as Rich

Media Analytics are expected to grow by 3

times in the coming year.

​The platform needed to store and analyse

all that information needs to be

continuously available and has to be

prepared to satisfy all the I/O requirements

for both stream analytics for immediate

results or post analysis to find common

patterns.

​InfoScale Storage is a perfect

Software Defined Solution to

create a storage backend that

can adapt to changing I/O

demands.

​Because the flexibility of using a Software

Defined Solution any hardware can be

used to create a commodity storage

backend able to store and manage the

data needed for Internet of Things

solutions.

​This document highlights a step by step

procedure to understand the hardware

capabilities used under InfoScale Storage

so you can make sure that maximum

throughput and capacity can be obtained

from your current and future hardware

investments.

 InfoScale Storage

6 © Veritas Technologies. 2015 6 © Veritas Technologies . 2015

Hardware Setup

+ Hardware configuration

+ Host side

+ Switch side

+ Modular array side

+ LUN side
02

7 © Veritas Technologies. 2015

HARDWARE CONFIGURATION

Understanding your hardware capabilities is the first step towards a tuning exercise. The

hardware we used during our testing is represented below.

 Two nodes where each node has a dual port HBA card

 There are 2 active paths to each LUN

 Two switches with 2 switch ports per switch (4 in total) are used

to connect to the dual port HBA cards

 6 switch ports per switch (12 in total) are used to connect to the

six modular storage arrays

 Each modular storage array has one port connected to each

switch (2 connections for each modular storage array)

 Each modular array has 4 LUNs using 11 disks

 Therefore we have 24 LUNs available in total

8 © Veritas Technologies. 2015

HOST SIDE

Understand what are the theoretical limits at the host side

 Max theoretical throughput

per port is 8Gbits/sec

 Because two paths are used,

max theoretical throughput

per node would be

16Gbits/sec

 The max theoretical

throughput for two nodes

should be 32Gbits/sec

In our One-node testing, the dual port HBA card

bottlenecked at approximately 12Gbits/s

 Two nodes where each node has a dual port HBA card

 There are 2 active paths to each LUN

9 © Veritas Technologies. 2015

AT THE SWITCH

Understand the theoretical limits at the switch

 Each switch is capable of

32Gbits/sec

 There are two switches, so

the theoretical limit should be

64Gbits/sec

 However, each individual

switch port is capable of

8Gbits/sec

 Because only 4 switch ports

are connected to the host

nodes, it limits the max

throughput through both

switches to 32Gbits/sec

 Two switches with 2 switch ports per switch (4 in total) are used

to connect to the dual port HBA cards

 6 switch ports per switch (12 in total) are used to connect to the

six modular storage arrays

10 © Veritas Technologies. 2015

MODULAR STORAGE ARRAY

Understand the theoretical limits of the storage modular arrays

 There are 6 modular storage

arrays, each has 2 ports

 Each port has a theoretical

max throughput of

4Gbits/sec

 There are a total of 12

storage array connections to

the two FC switches

 The total theoretical max

throughput is therefore

48Gbits/sec for all six

modular storage arrays

In our Two-node testing, the combination of 6

storage arrays bottlenecked at 20Gbits/sec

 Each modular storage array has one port connected to each

switch (2 connections for each modular storage array)

11 © Veritas Technologies. 2015

LUN CONFIGURATION

Understand the LUN configuration, ensure all the LUNs are configured equally

 Each LUN is composed of 11

disks in a RAID-0

configuration

 There are 4 LUNS available

per modular array

 There are a total of 24 LUNs

available in the environment

 Each LUN is 3TB approx

 Because there are 2 paths per

LUN, there is a total of 48

active paths on each node

 Each modular array has 4 LUNs using 11 disks

 Therefore we have 24 LUNs available in total

12 © Veritas Technologies. 2015

LUN THROUGHPUT

Details on the LUN throughput

 Reading from a single LUN

we achieve 170MBytes/sec

 Reading from two LUNs we

achieve 219MBytes/sec

because the contention at the

modular array level

 Reading from two LUNs,

where each LUN is located in

a different modular storage

array, the performance is

342MBytes/sec

 Each modular array controller cache is shared when I/O is

generated to multiple LUNs within the same array

13 © Veritas Technologies. 2015

HARDWARE CONFIGURATION

It is important to understand the difference between the theoretical performance of each of the

components and the real performance exhibited in your particular configuration

​In fact, and as we will see later, the

maximum performance achieved is

20Gbits/sec when reading from both

nodes and 12Gbits/sec when reading

from one node.

​The following sections will describe the

volume and file system configuration and

the different tests performed to achieve a

balanced IO configuration across all six

storage modular arrays.

​We will also see how we can take

performance metrics at different levels to

understand how each piece in our

architecture is performing.

​Understanding all the different

performance we may get will help us to

understand the limits we have in our

configuration. If we only take a look at the

modular storage array performance, we

may have the perception of being able to

achieve 48Gbits/s.

​But as we have seen, we have a

maximum theoretical throughput for the

two nodes of 32Gbits/s.

14 © Veritas Technologies. 2015 14 © Veritas Technologies . 2015

Maximize Volume
Throughput

+ Volume configuration

+ Performing sequential reads from the volume

+ Stripe unit

+ Balanced IO across the storage system 03

15 © Veritas Technologies. 2015

VOLUME CONFIGURATION

 24 columns to balance I/O across all HW

64k

512k

1024k

​Because we want to balance the I/O

across all the available hardware, we are

going to create a volume with 24 columns

which is the same number of LUNs that

we have available. With this configuration

we guarantee the I/O is going to be spread

across all the LUNs.

​When creating a volume, the stripe unit

needs to be specified. This is the IO size

that we are going to use to read from each

LUN.

​We performed experiments with three

different stripe units sizes to understand

the best choice for performance in our

configuration.

16 © Veritas Technologies. 2015

PERFORMING SEQUENTIAL READS FROM THE VOLUME – SINGLE NODE

vxbench is a tool that can be used to perform sequential reads. We are reading using a block

size of 1MB and 64 parallel processes. We are going to measure the performance at different

levels.

Vxbench tool reports

1577033.29 KBytes/sec, which is

1.504 Gbytes/sec

​Because the 8b/10b encoding overhead,

the switch metrics reports a higher

throughput. Using the metrics at the host

level is a better approach.

​At Fibre channel roadmap v1.8 the 8GFC

throughput is 1600MB/s for a full duplex.

​The HBA is a dual port card.

Documentation shows that it is actually

797MB/sec for each direction.

​Therefore, using our dual port card in the

host, the maximum theoretical throughput

will be 1.5566 GBytes/sec, which

matches with our results

​This shows the HBA bottlenecks at

approx.1.5 Gbytes/sec in our

environment.

Iostat reports 3155251.20

sectors/sec, which is 1.504

Gbytes/sec

Vxstat reports 63109120 blocks

read every 20 seconds,, which is

1.504 Gbytes/sec

Portperfshow at the switch

level shows 1.632 Gbytes/sec

http://fibrechannel.org/fibre-channel-roadmaps.html
http://en.wikipedia.org/wiki/Fibre_Channel

17 © Veritas Technologies. 2015

PERFORMING SEQUENTIAL READS FROM THE VOLUME - TWO NODES

Now vxbench is going to be run in each of the nodes. Again we measure the performance at

different levels when running IO from both nodes at the same time

Vxbench tool running in both

nodes reports a total of 2.569

Gbytes/sec

​Again, because the 8b/10b encoding

overhead, the switch metrics reports a

higher throughput.

​In this two node test, Vxbench only reports

approx. 1.285 Gbytes/sec per node,

therefore we do not reach the per node

HBA bottleneck when performing IO from

both nodes.

​Iostat reports for each node shows how

the performance per LUN decrements

when performing IO from both nodes

​This shows the storage bottlenecks at

approx. 2.5 Gbytes/sec in our

environment.

Iostat reports a total of 2.570

Gbytes/sec for both nodes

Vxstat reports a total of 2.573

Gbytes/sec for both nodes

Portperfshow at the switch

level shows 2.741 Gbytes/sec

for both switches

18 © Veritas Technologies. 2015

STRIPE UNIT

64k

512k

1024k

​Running the vxbench program using

different stripe units we see that the 512k

width is the most optimal. We have used

sequential reads with 1024k IO size.

​Using one single node we reached the

12Gbits/sec (1.5Gbytes/sec) throughput

which is limited by the HBA as we saw in

the previous page.

​Using two servers, we reached

20Gbits/sec (2.5Gbytes/sec).

​From this point onwards we

now know the maximum

throughput achievable using

our hardware configuration.

 1 Server 2 Servers

 11.5Gbits/sec 19.5Gbits/sec

 12.0Gbits/sec 20.5Gbits/sec

 12.0Gbits/sec 20.3Gbits/sec

19 © Veritas Technologies. 2015

BALANCED IO ACROSS THE STORAGE SYSTEM

 48 Devices paths (sdp, sdo, sdn, ….)

 R
ea

d
s

/
se

c
 Each path to each LUN is doing the same amount

of work

 Iostat output

​Vxbench captures the throughput per

process.

​Vxstat captures the throughput per disk

(LUN).

​Iostat captures the throughput per path.

​The graph shows how the IO is evenly

distributed across all the paths and how

the average request size for each path is

512K, which matches with the stripe unit

size we used.

​Balanced IO is observable across all the

different metrics.

 A
v

er
a

g
e

re
q

u
es

t
si

ze
 512K

20 © Veritas Technologies. 2015 20 © Veritas Technologies . 2015

File System
Throughput

+ File System performance using Direct-IO reads

+ Performance with read ahead disabled

+ Enabling read ahead and tuning read_nstream

+ Summary 04

21 © Veritas Technologies. 2015

FILE SYSTEM PERFORMANCE USING DIRECT-IO READS

​File System direct IO mimics the Volume

Manager raw disk test. To make it more

clear we are creating a file with a single

extent so all the blocks are contiguous.

Then we can use vxbench with –direct

option to read the file using direct IO.

​As Direct IO is used, each read will fetch

data directly from disk, so no buffering is

being performed, therefore data is not

being pre-fetched from disk, i.e. no read

ahead is being performed.

​The sequential read throughput was the

same using the file system with direct IO

as reading from the Volume Manager raw

disks devices.

​In this direct IO test all 64 processes read

from the same file and all see similar

throughput. In the previous raw disk test

all 64 processes read from the same

device and also see similar throughput. In

both test maximum possible throughput is

achieved.

​$ touch /data1/file1

​$ /opt/VRTS/bin/setext -r 4194304 -f contig /data1/file1

​$ dd if=/dev/zero of=/data1/file1 bs=128k count=262144

​$ /opt/VRTS/bin/fsmap -A /data1/file1

​Volume Extent Type File Offset Dev Offset Extent Size Inode#

​ vol1 Data 0 34359738368 34359738368 4

​$ ls -lh /data1/file1

​-rw-r--r-- 1 root root 32G Mar 3 14:12 /data1/file1

 64 Processes

 G
b

it
s/

se
c

 Each of the 64 processes is achieving similar throughput

22 © Veritas Technologies. 2015

FILE SYSTEM PERFORMANCE WITH BUFFERED IO SEQUENTIAL READS

​read_pref_io

​This parameter means the “preferred read

IO size”. It will be the maximum IO

request submitted by the file system to

the volume manager.

​The default value is set by the volume

manager stripe unit, so in our case it will

be 512K (524228 bytes).

​If an application is requesting only 8K

reads, read ahead will pre-fetch the file

data using IO requests of size 512K to the

volume manager. This converts the 8K

application reads into 512K disk reads.

​The larger IO size reading from disk

improves read performance, 512k is our

optimal size.

​It is not recommended to tune read ahead

by changing the value of read_pref_io,

instead we can tune the value of

read_nstream if it is needed.

​read_nstream

​This parameter defaults to the number of

columns (LUNs) in the volume. In our

configuration the default value will be 24.

​read_pref_io * read_nstream determines

the max amount of data that is pre-

fetched from disk using read_ahead.

​To reduce the amount of read ahead this

parameter can be reduced.

​In our example, as we are using 24

columns with 512K stripe unit, the max

amount of read ahead will be 12MB. As

we will see this will be too much data to

read ahead and will cause an imbalance

in read IO performance between the

processes.

​.

​To perform the test using Buffered IO,

independent files for each processes are

going to be created. 16GB of data will be

pre-allocated to each file.

​As we want to make sure that data is not

in memory, the file system can be

remounted (-o remount) between each test

to make sure that all reads will be coming

from disk.

​Each process will now be reading from a

different file and the vxbench IO block size

will be 32K, as this is closer to real world

workloads.

​The greatest impact to the performance of

sequential reads when using buffered IO

is read ahead. It asynchronously pre-

fetches data into memory, providing clear

benefits for sequential read performance.

​There are two parameters that control

read ahead behaviour.

23 © Veritas Technologies. 2015

IO SIZES WITH READ AHEAD DISABLED

When read ahead is disabled,

the maximum throughput

threshold cannot be achieved.

​The maximum throughput per node cannot

be achieved when read ahead is disabled

in our test. Although the throughput is

evenly balanced across the processes, the

total throughput is reduced by half.

​read_pref_io is only used if read ahead is

enabled. vxbench is reading 32K at a time

and because read ahead is disabled we

will only read a maximum of 32K at a time

from disk (the size of the vxbench reads).

​In this example we are using 64 process

reading 64 files.

 64 Processes

 G
b

it
s/

se
c

 Performance is below what is expected

32K 32K 32K

Memory

Volume Manager Layer

File System Layer

Request
32K

Request
32K

Request
32K

Read 32K

Provides
32K

Provides
32K

32K 32K

32K 32K

32K

32K

32K 32K

24 © Veritas Technologies. 2015

IO SIZES WITH READ AHEAD ENABLED

Read ahead improves

sequential read performance

by increasing the IO size and

prefetching data from disk.

​Now read ahead is enabled and vxbench

is still reading 32K at a time. However now

we are reading a maximum of 512K at a

time from disk because read_pref_io is set

to 512K. This larger IO size improves

performance.

​Also data is being pre-fetched from disk

before vxbench has requested it, so the

next vxbench IO request will fetch the data

directly from memory without having to go

to the disk.

32K 32K 32K

Memory

Volume Manager Layer

File System Layer

Request
32K

Request
512K

Request
512K

Read 512K

Provides
512K

Provides
32K

32K 32K

512K

25 © Veritas Technologies. 2015

ENABLING READ AHEAD AND TUNING READ_NSTREAM

read_nstream = 24

Reading too much data in advance can create an imbalance between processes. Remember that

read_pref_io * read_nstream determines the max amount of data pre-fetched from disk.

​read_nstream = 12 ​read_nstream = 6 ​read_nstream = 1

 64 Processes

 G
b

it
s/

se
c

 64 Processes

 G
b

it
s/

se
c

 64 Processes

 G
b

it
s/

se
c

 64 Processes

 G
b

it
s/

se
c

With read ahead enabled all the tests achieved the max

amount of throughput, however the IO is not evenly

balanced between the processes until read_nstream is set

to one

24 x 512K = 12MB ​12 x 512K = 6MB ​6 x 512K = 3MB ​1 x 512K = 512K

The amount of data that is pre-fetched is reduced as

read_nstream is reduced. By default, read_nstream was 24

in our configuration, which was pre-fetching 12MB of data at

a time, which is too aggressive.

26 © Veritas Technologies. 2015

READ AHEAD TUNING SUMMARY

​We have seen how read ahead

parameters obtain their default values

from the stripe unit size and the number of

columns in the volume. In our test

read_pref_io default was 512K and

read_nstream default was 24 based in the

number of columns used. This meant that

each process would pre-fetch 12MB of

data from disk at a time.

​Pre-fetching this amount of data causes

an imbalance in throughput between the

processes reading from different files.

​Our goal was to maintain the total

performance of 1.5Gbytes/sec but also to

maintain a balanced throughput across all

the processes.

​When tuning read ahead parameter

values, our recommendation is to reduce

read_nstream rather than read_pref_io.

​When adjusting the parameters it is

important to consider the number of

running processes that will be reading

from disk at the same time, as the

available throughput will be distributed

between these processes.

​Below graphic shows how disabling

read ahead resulted in poor

performance and how in our case using

read ahead with read_nstream=1

provided the maximum throughput and

perfectly balanced performance across

all 64 processes.

