
Commercial database I/O configurations  

Colin Eldridge and Ed Menze 



Acronym  Description 

BIO File system buffered i/o 

DIO Direct i/o 

DDIO Discovered direct i/o 

QIO Quick i/o 

CQIO Cached QIO 

CIO Concurrent i/o 

ODM Oracle disk manager 

CODM Cached ODM 

2 

Acronyms 

Commercial database I/O configurations 



Session objectives 

• To explain the Database I/O configuration choices using VxFS/CFS 

• To explain when file data is buffered in the file system cache 

• To explain why it is sometimes better to not buffer the file data  

• To explain the page size, the sector size and file system block size 

• To explain how EXCLUSIVE write file locking can be avoided 

• To also demonstrate the usefulness of the vxtrace diagnostic tool 

 

• Overriding session objective: 

    To assist planning and decisions concerning the configuration choices 
for Commercial Database environments utilising VxFS and CFS. 

    VxFS (and CFS) are not solely about improving storage utilisation, 
they’re also about improving system memory utilisation. 

 

 Commercial database I/O configurations 3 



What is the file system cache? 

• All operating systems provide a mechanism of buffering fs file 
data in memory, often called the buffer cache, we call it:  

the pagecache 

• File data is held in units of pages aligned along the file offset: 

struct page 

• The page size can differ between operating systems: 

the page size is commonly either 4Kb or 8Kb 

• The pagecache is independent of the file system type, part of: 

the operating system’s Virtual Memory Management *VMM+ 

 

Commercial database I/O configurations 4 



file data held in pages in the pagecache 

 

  

Commercial database I/O configurations 5 

4Kb 
page 

4Kb 
page 

4Kb 
page 

4Kb 
page 

  0         file offset    

  4096 

12288 

16384 

18432   End of File 

  8192 

The diagram depicts a file which has: 
- a size 18432 bytes (18Kb)  
- 4 associated pages (total 16Kb) 
- 14Kb of its file data held in memory  
- 4Kb of file data not held in memory 



How is file data buffered in the pagecache? 

• By simply performing buffered i/o to a file, reads and/or writes  

• A file’s data will remain in the pagecache after the i/o is 
complete, this is “file system buffered i/o” *BIO+ 

• asynchronous write BIO marks each updated page as ‘dirty’ 
(modified), pages are later flushed and marked as ‘clean’ 

• synchronous write BIO also marks each updated page as ‘dirty’ 

• BIO “to and from disk” is performed in one or more multiples of 
the page size, except when the page spans EOF or a sparse area. 

• BIO takeaway: BIO can perform read-ahead (pre-fetching data 
from disk) by populating more pages than requested whilst 
performing a sequential read i/o pattern. 

Commercial database I/O configurations 6 



What is the direct I/O caching advisory? 

• VxFS direct i/o [DIO] does not buffer data in the pagecache 

• DIO requires specific alignment and sizing criteria to be met. 

• If the criteria is not met, the i/o will be performed as [data-
synchronous+ BIO, for this reason DIO is an ‘advisory’ only. 

• DIO’s smallest i/o size is the sector size. The sector size on AIX, 
Solaris and Linux is 512 bytes, on HP-UX it is 1024 bytes.  

• DIO requires the i/o to start on a sector-aligned (file-offset) 
boundary and the i/o must be a multiple of sectors in size. 

• DIO is performed as synchronous i/o, meaning that the data is 
already on disk when the write syscall returns to the user. 

• DIO cannot perform read_ahead (as DIO does not buffer data) 

Commercial database I/O configurations 7 



How is the VxFS DIO advisory enabled? 

• VxFS mount options 

– convosync=direct    (convosync affects files open()ed using O_SYNC/O_DSYNC) 

– mincache=direct            (mincache affects all other files in the file system) 

• The VX_SETCACHE ioctl (vxfsio) interface − passing VX_DIRECT 

• Opening the file using flag O_DIRECT (non posix, where available) 

• Triggering via discovered_directo_sz [DDIO] tunable, default 256Kb 
     # /opt/VRTS/bin/vxtunefs /vxfs.mounted.here 

     Filesystem i/o parameters for /vxfs.mounted.here 

     ... 

     discovered_direct_iosz = 262144 

• Memory mapped I/O cannot utilise DIO. If the file is memory mapped, 
any DIO accesses are done as data synchronous I/O. 

• DIO is performed synchronously without buffering in the pagecache 

– ODM has its own form of direct i/o which can be asynchronous if requested 

Commercial database I/O configurations 8 



DIO and DDIO takeaways 

• Database utilisation of DIO is achieved via “convosync=direct” 

– Use of “mincache=direct” is not required 

• DIO avoids double buffering of file data, but not the EXCL rwlock 

• Mixing DIO/DDIO and BIO to the same file can hit performance 

• Be aware of DDIO when performing I/O with larger I/O sizes 

• DIO will be performed as data-synchronous buffered I/O if: 

– The file is memory mapped 

– The alignment and sizing criteria are not met 

• DIO and DDIO are not identical, because DDIO does not: 

– require a synchronous commit of the inode when the file is extended or 
blocks are allocated. 

– take an alternative action if the alignment and sizing criteria are not met 

 
Commercial database I/O configurations 9 



VxFS Fundamentals – mkfs block sizes 

# mkfs -V vxfs -o bsize=1024 /dev/vx/rdsk/diskgroup/volume 

209715200 sectors, 104857600 blocks of size 1024, log size 65536 blocks 

 

# mkfs -V vxfs -o bsize=2048 /dev/vx/rdsk/diskgroup/volume 

209715200 sectors, 52428800 blocks of size 2048, log size 32768 blocks 

  

# mkfs -V vxfs -o bsize=4096 /dev/vx/rdsk/diskgroup/volume 

209715200 sectors, 26214400 blocks of size 4096, log size 16384 blocks     

  

# mkfs -V vxfs -o bsize=8192 /dev/vx/rdsk/diskgroup/volume 

209715200 sectors, 13107200 blocks of size 8192, log size 8192 blocks 

 

The above mkfs commands are all using the same 100GB volume, the log size is 64MB 

 

Commercial database I/O configurations 10 



VERITAS file system block numbers and extents 

fsblock 
 0 

fsblock 
 1 

fsblock 
 2 

fsblock 
 3 

fsblock 
 4 

fsblock 
 5 

fsblock 
 6 

... 
  

fsblock 
 ‘n’ 

Commercial database I/O configurations 11 

/dev/vx/rdsk/diskgroup/volume 

VxFS splits the device into a linear list of equal sizes blocks, starting at block number 0 

An “extent” is simply a contiguous number of file system blocks. An extent is either 
currently allocated to a file [inode] or it is currently free (i.e. not allocated to a file). 

fsblock 
 0 

... fs block 
 30724 

fsblock 
 30724 

fsblock 
 30725 

fsblock 
 30726 

fsblock 
 30727 

... fsblock 
 ‘n’ 

/dev/vx/rdsk/diskgroup/volume 

Above in blue is an example of a single extent, 3 file system blocks in size, starting at 
file system block number 30724 , so this extent consists of blocks 30724, 30725, 30726. 



Using dd and vxtrace 
 

 

# vxtrace -g testdg & 

[1]     647324 

# dd if=/dev/vx/rdsk/testdg/vol2 bs=1024 skip=2464 count=1 1>/dev/null 2>&1 & 

[2]     651480 

10263 START read vdev vol2 block 4928 len 2 concurrency 1 pid 651480 

10263 END read vdev vol2 op 10263 block 4928 len 2 time 0 

# kill -9 647324 

  

 

Commercial database I/O configurations 12 



Using vxtrace to watch raw disk i/o and direct i/o 

# mount -V vxfs -o mincache=direct /dev/vx/dsk/testdg/vol2 /mnt 

# cd /mnt; ls -li bfile 

5 -rw-r--r--   1 root     system       377910 Oct 31 13:37 bfile 

 

# echo '5i.mapall' | /opt/VRTS/bin/fsdb /dev/vx/rdsk/testdg/vol2 

offset    device          block           length 

0              0           2464              368        

376832         0           1816                2          

 

# vxtrace -g testdg | grep START & 

# dd if=/dev/vx/rdsk/testdg/vol2 bs=1024 skip=2464 count=1 1>/dev/null 2>&1 

10264 START read vdev vol2 block 4928 len 2 concurrency 1 pid 651480 

 

# dd if=/mnt/bfile bs=1024 count=1 1>/dev/null 2>&1                                  

10265 START read vdev vol2 block 4928 len 2 concurrency 1 pid 651296 

 

 

 

Commercial database I/O configurations 13 



Using vxtrace to watch buffered i/o reads 

# mount -V vxfs /dev/vx/dsk/testdg/vol2 /mnt 

# cd /mnt 

# vxtrace -g testdg | grep START & 

# dd if=bfile of=/dev/null bs=1024 count=1              

10960 START read vdev vol2 block 4928 len 8 concurrency 1 pid 1335442 

1+0 records in. 

1+0 records out. 

# 

# dd if=bfile of=/dev/null bs=1024 count=1 

1+0 records in. 

1+0 records out. 

# dd if=bfile of=/dev/null bs=1024 count=1 

1+0 records in. 

1+0 records out. 

 

 

 

Commercial database I/O configurations 14 



Performing read_ahead 

 

 

# dd if=bfile of=/dev/null bs=1024 count=4 

4+0 records in. 

4+0 records out. 

10961 START read vdev vol2 block 4936 len 128 concurrency 1 pid 676004 

10962 START read vdev vol2 block 5064 len 128 concurrency 2 pid 676004 

10963 START read vdev vol2 block 5192 len 128 concurrency 3 pid 676004 

10964 START read vdev vol2 block 5320 len 128 concurrency 4 pid 676004 

10965 START read vdev vol2 block 5448 len 120 concurrency 5 pid 676004 

 

 

 

 

 

 Commercial database I/O configurations 15 



Pre-allocating and identifying extents 

# touch newfile 

# setext -r 20000 -f contig ./newfile 

# du -k ./newfile 

20000   ./newfile 

# ls -li ./newfile 

4 -rw-r--r--   1 root     root            0 Feb 22 10:49 ./newfile 

# dd if=/dev/zero of=./newfile bs=100k count=200 

200+0 records in 

200+0 records out 

# ls -li ./newfile 

4 -rw-r--r--   1 root     root     20480000 Feb 22 10:51 ./newfile 

# /opt/VRTS/bin/fsmap -a ./newfile 

  Volume  Extent Type     File Offset     Extent Size     File 

    vol2         Data               0        20480000     ./newfile 

# /opt/VRTS/bin/ncheck -oblock=- /dev/vx/rdsk/testdg/vol2 | grep newfile 

UNNAMED     999      4    -      - 0/32768-0/52767 /newfile 

 

 

 

Commercial database I/O configurations 16 



Small fragmented file – buffered read i/o 

# echo '8i.mapall' | /opt/VRTS/bin/fsdb /dev/vx/rdsk/testdg/smallvol 

offset  device            block      length 

0            0            38584           1          

1024         0            38640           2          

3072         0            38672           1   

# ls -li 4k.fragmented.file 

8 -rw-r--r--   1 root     system      4096 Dec 15 08:49 4k.fragmented.file 

# 

# dd if=./4k.fragmented.file of=/dev/null bs=1024 skip=1 count=1 

6 START read vdev smallvol block 77168 len 2 concurrency 1 pid 831646 

7 START read vdev smallvol block 77280 len 4 concurrency 1 pid 831646 

8 START read vdev smallvol block 77344 len 2 concurrency 1 pid 831646 

1+0 records in 

1+0 records out 

 

 

 

Commercial database I/O configurations 17 



Small fragmented file – buffered write i/o 

Note: File system has since been umounted and freshly mounted again 

# ls -li 4k.fragmented.file 

8 -rw-r--r--   1 root     system      4096 Dec 15 08:49 4k.fragmented.file 

# vxtrace -g testdg | grep START &                                 

# dd if=/dev/zero of=./4k.fragmented.file bs=1024 seek=1 count=1 conv=notrunc 

12 START read vdev smallvol block 77168 len 2 concurrency 1 pid 544850 

13 START read vdev smallvol block 77280 len 4 concurrency 1 pid 544850 

14 START read vdev smallvol block 77344 len 2 concurrency 1 pid 544850 

1+0 records in 

1+0 records out 

#  

15 START write vdev smallvol block 77168 len 2 concurrency 1 pid 98432 

16 START write vdev smallvol block 77280 len 4 concurrency 1 pid 98432 

17 START write vdev smallvol block 77344 len 2 concurrency 1 pid 98432 

 

 

 

Commercial database I/O configurations 18 



Quick I/O 

• Not an API, databases access each regular file as a raw device 

• No exclusive write locking is performed on the file 

• I/O is performed direct, thus prevents double-buffering of data 

• Enabled/disabled via the VxFS mount options qio and noqio  
# qiomkfile -s 100m /database/dbfile 

# ls -al 

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:03 .dbfile 

lrwxrwxrwx 1 oracle dba        19 Oct 22 15:03 dbfile -> .dbfile::cdev:vxfs: 

• The kernel driver utilised by QIO is called “fdd” 

• QIO is supported on CFS and enabled by default. 

• QIO is not supported on Linux (CIO is the alternative option) 

Commercial database I/O configurations 19 



Concurrent I/O caching advisory 

• Not an API, allows concurrent readers and writers 

• No exclusive write locking is performed on the file 

• I/O is performed direct, thus prevents double-buffering of data 

• Enabled for all files in a file system via the cio mount option  

• The cio option cannot be disabled by remounting the file system 

• Enabled per file descriptor: 

– Via VX_SETCACHE ioctl passing VX_CONCURRENT 

– On AIX only, via the O_CIO open flag for the open() system call 

– Write syscalls to the same file through other fd’s remain unaffected 

• Advisory only, same alignment and sizing criteria as DIO 

• CIO is supported on CFS 

Commercial database I/O configurations 20 



Intermediate Session Summary 

• DIO/QIO/CIO/ODM all avoid the double buffering of data 

• BIO permits use of VxFS read_ahead 

• QIO/CIO/ODM all avoid the exclusive file write lock 

• Commercial databases submit synchronous I/O to file systems 

• DB2 customers commonly use CIO 

• Sybase customers commonly use QIO or CIO 

• Oracle customers commonly use ODM 

• Database customers who commonly use BIO are often unaware 
of the choice of I/O options available. 

This session will now explain ODM/CODM/CQIO 

Commercial database I/O configurations 21 



ODM – Oracle Disk Manager 

 

• ODM i/o is very efficient 

– Interface and implementation 

 

• Cached ODM can provide additional performance 

– Can help in specific situations 

– Most configurations should stick with traditional ODM 

Commercial database I/O configurations  22 



ODM – Interface 

 

• An i/o interface created by Oracle 

– VERITAS worked closely with Oracle in design of API during the 
implementation. 

– Not general-purpose API, but efficient for Oracle’s i/o model 

– Interface is specific to Oracle 

 

 

Commercial database I/O configurations 23 



 

 

Commercial database I/O configurations 24 

ODM Interface -- SmartSync 

 

• File type optimizations -- SmartSync 

– ODM advises VxVM of i/o which does not require mirror resync 

• Each of those i/o’s is faster 

• Recovery is faster 



ODM – Implementation details 

 

 

• Implementation has much in common with QIO 

– Does not use VxFS pagecache, so Oracle can use larger SGA 

– Bypasses Posix rwlock, relies on Oracle to avoid i/o conflicts 

– No read-aheads 

 

Commercial database I/O configurations  25 



ODM Architecture 

Commercial database I/O configurations  26 

Buffered i/o 

 Oracle 

                  VxFS 

user 

kernel 

RW locking 

Pagecache 



ODM Architecture 

Commercial database I/O configurations  27 

Buffered i/o 

Raw 
device i/o 

 Oracle 

     QIO 

     FDD 

                  VxFS 

user 

kernel 

RW locking 

Pagecache 



ODM Architecture 

Commercial database I/O configurations  28 

Buffered i/o 

Raw 
device i/o 

Ioctls on 
/dev/odm/ctl 

ODM 
API 

 Oracle 

 libodm 

     QIO 

     FDD 

                  VxFS 

    ODM 

user 

kernel 

RW locking 

Pagecache 



Configuring Oracle with ODM 

 

• Oracle will use ODM for all file i/o (where it can), so will not 
make use of the pagecache 

 

• Make the SGA as large as possible 

Commercial database I/O configurations  29 



Cached ODM/QIO 

 

• Uses pagecache, conditionally, for some files 

 

• Caching and readahead can help in some special cases 

 

• Not appropriate for most workloads 

– Need to take memory from SGA to give back to pagecache  

– In general, for Oracle performance, Oracle makes better use of memory 
than the pagecache. 

Commercial database I/O configurations  30 



Cached ODM/QIO use cases 

• Memory available, but can’t (or don’t want to) increase the SGA 

– Instance Stacking, load changes with time 

 

• Oracle isn’t applying SGA memory effectively 

– Parallel query processes which do not use SGA 

– Extremely read-intensive workloads for which Oracle readahead is insufficient 

 

• Interaction of ODM and non-ODM i/o 

– Pages are invalidated by ODM writes, but reloaded by non-ODM BIO reads.  
Cached ODM avoids invalidation.  E.g., third-party replication. 

 

• Activation of ODM has hurt performance 

– Often a symptom of not increasing SGA to compensate, but not always. 

Commercial database I/O configurations  31 



Commercial database I/O configurations  32 

CODM use case: Pagecache with Instance Stacking 

SGA 

SGA 

SGA 

SGA 
D

yn
am

ic
 

C
ac

h
e

 

Oracle 

Oracle 

Oracle 

Oracle 

Oracle 

Oracle 

Oracle 

Oracle 

SGA 

SGA 

SGA 

SGA 

SGA 

SGA 

SGA 

SGA 

Pa
ge

ca
ch

e 

 Pagecache shared between Oracle instances 
 CODM leverages pagecache for specific files 
 Reduced fixed SGA size per instance 

Shared Cache Efficiency 

Failover configuration 

 Multiple failover instances can be 
configured with small SGAs 

 Pagecache enhances those instances which 
become active 

 CODM supported on CFS for failover, but 
doesn’t help RAC performance 



Commercial database I/O configurations  33 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

Tr
an

sa
ct

io
n

s 
/ 

m
in

 

DB cache size 

Throughput vs. DB cache size 

caching enabled 

caching Disabled 

CODM Performance: Parallel Instances 

Comparable 
Performance 



Cached ODM/QIO admin 

 

• Activate caching on the filesystem 

   # vxtunefs –o odm_cache_enable=1 /mnt1 

 

• Either turn caching on for individual files: 

   # odmadm setcachefile /mnt1/file1=on 

 

• Or set the cachemap to affect caching for all files 

   # odmadm setcachemap file-type/io-type=cache-type 

Commercial database I/O configurations  34 



Cached ODM advisory tool 

 

• Analyzes statistics from Oracle AWR 

– can use periodic AWR snapshots, if available 

 

• Used to find candidate files for caching 

– Files that are heavily read, not a lot of writes 

 

• Can also administer caching settings 

– Settings made with this tool are persistent – odmadm/qioadm settings 
need to be added to a configuration file. 

 

dbed_codm_adm 

Commercial database I/O configurations  35 



Cached ODM config -- cachemap 

 

• Alternate method of configuring CODM 

 

• Conditional caching based on io-type/file-type combination. 

 

• Cachemap applies to files with default cache settings: 

– on – cache everything 

– off – cache nothing 

– def – use global cachemap 

 

Commercial database I/O configurations  36 



Cached ODM/QIO admin – statistics 

 

• odmstat/qiostat can display caching statistics for each file  

Commercial database I/O configurations  

# odmstat –l /mnt1/file 
 
FILE NAME        NREADS   NWRITES     RBLOCKS     WBLOCKS   RTIME  WTIME 
             NREQUESTIO   NDISKIO   HIT RATIO 
  
/mnt1/file         2450         0       18515           0     6.1    0.0 
                   2450      1179        56.0 

37 



Q&A 


