
Carlos Carrero
Product Management

Quick Guide to Test InfoScale 7.1

Docker Plug-in using VMware

WorkStation

For those who want to be familiar on how InfoScale 7.1 and Docker Plug-in

integrate and works but only have access to their own laptop

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 2

Contents

Introduction ... 3

Software ... 3

VMware WorkStation Configuration ... 4

Veritas InfoScale 7.1 Install and Configuration ... 4
Software Deployment ... 5
Configuration ... 7
Storage Configuration .. 8

Docker Engine & InfoScale Plug-in Installation .. 10
InfoScale Docker Plug-in Installation ... 10
Docker Engine Installation ... 11

Plug-in Utilization .. 12
Testing data persistence ... 14

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 3

Introduction
If you have this document in your hands you probably are familiar with the Veritas InfoScale

Containers Group. This is a repository of demos, white papers and binaries that will help you adopt

Docker technology without any fear when having to manage storage.

Containers are clearly the new wave in virtualization and they will create more agile data centers.

They will allow better resources consolidation and will reduce development cycles. But all these

benefits will go away if the storage is not managed accordingly. Veritas InfoScale, which is an

evolution of the legacy Veritas Storage Foundation embraces Software Defined Storage to adapt to

the new needs and requirements containers brings into the data center. This truly software solution

provides scalability, data persistency, copy management, resiliency, IO acceleration, quality of

service, encryption and disaster recovery for the modern containerized data center.

In order to keep the agile environment, Veritas has created a Docker Plug-in that integrates Docker

and InfoScale to allow the Docker user to get all that functionality without having to manage a

storage platform, and without having to call Storage Administrators (and wait long times) to perform

typical storage management chores.

This paper is a quick guide for those who just want to get familiar with the solution without having

to make any big investment, so VMware WorkStation is used to create a simple 2 node

configuration.

Software
This paper will be using the new version of InfoScale 7.1 that introduces among other capabilities

features like Quality of Service, Encryption and support up to 64 nodes when using local storage

(Flexible Storage Sharing).

InfoScale 7.1 can be downloaded in this link:

https://www.veritas.com/content/trial/en/us/veritas-infoscale-solutions.html

In that link download either the ISO or the tar image for Red Hat Enterprise Linux:

The Docker Plug-in is so far a controlled release package that is currently in tech-preview mode. The

plug-in is continually updated so make sure you get access to the latest version. In order to download

it you have to be a member of the Veritas community and join the Veritas InfoScale Containers

http://www.veritas.com/community/groups/veritas-infoscale-containers-group
http://www.veritas.com/community/groups/veritas-infoscale-containers-group
https://www.veritas.com/content/trial/en/us/veritas-infoscale-solutions.html
http://www.veritas.com/community/groups/veritas-infoscale-containers-group

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 4

Group because legal reasons. Once you have been approved as a member, this is the link to

download the plug-in:

https://www.veritas.com/community/downloads/5-plug-trialware-download

VMware WorkStation Configuration

When creating Virtual Machines using VMware WorkStation, use these options:

 Virtual Machine: RHEL 7 64-bit

 Cores: Create the VM with 2 processors, 1 core per processor

 Memory: Minimum of 2GB memory per VM

 Network Type: Use network address translation (NAT)

 SCSI Controller TYPE : LSI Logic SAS

 Disk Type: SCSI

 Select Disk: Create a new virtual disk

The VMs will need two private networks that are used for the cluster inter-communication. You can

create those two networks using a custom virtual network as specified in the following figure:

Veritas InfoScale 7.1 Install and Configuration

http://www.veritas.com/community/groups/veritas-infoscale-containers-group
https://www.veritas.com/community/downloads/5-plug-trialware-download

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 5

Software Deployment

Once you have downloaded the Veritas_InfoScale_7.1_RHEL package, either using the ISO or tar

image, make it available to any of the VMs and from there execute the installer script (this only

needs to be executed in one of the servers and will deploy and configure in all of them):

/root/dvd1-redhatlinux/rhel7_x86_64

[root@docker1 rhel7_x86_64]# ./installer

Choose “I” to Install a Product:

Task Menu:

 P) Perform a Pre-Installation Check I) Install a Product

 C) Configure a Product Component G) Upgrade a Product

 O) Perform a Post-Installation Check U) Uninstall a Product

 L) License a Product S) Start a Product

 D) View Product Descriptions X) Stop a Product

 R) View Product Requirements ?) Help

Enter a Task: [P,I,C,G,O,U,L,S,D,X,R,?]

Select option 4 for Veritas InfoScale Enterprise and select “y” to configure it after installing the

packages:

 1) Veritas InfoScale Foundation

 2) Veritas InfoScale Availability

 3) Veritas InfoScale Storage

 4) Veritas InfoScale Enterprise

 b) Back to previous menu

Select a product to install: [1-4,b,q,?] 4

Would you like to configure InfoScale Enterprise after installation? [y,n,q] (n) y

Select option 4 for SFCFSHA:

 1) Cluster Server (VCS)

 2) Storage Foundation (SF)

 3) Storage Foundation and High Availability (SFHA)

 4) Storage Foundation Cluster File System HA (SFCFSHA)

 5) Storage Foundation for Oracle RAC (SF Oracle RAC)

Select a component to configure: [1-5,q] 4

Enter the system names. In our case, the name of the VMs are docker1 and docker2. Make sure they

can reach each other using an IP address and host name:

Enter the system names separated by spaces: [q,?] docker1 docker2

Let the installer to set ssh password-less temporarily for you:

Would you like the installer to setup ssh or rsh communication automatically

between the systems?

Super user passwords for the systems will be asked. [y,n,q,?] (y) y

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 6

The installer will check if all rpms required are installed. If not, the installer can automatically use

yum to install them (option 1):

The following required OS rpms (or higher version) were not found on docker1:

 net-tools-2.0-0.17.20131004git.el7.x86_64 bc-1.06.95-13.el7.x86_64 perl-

Socket-2.010-3.el7.x86_64

ed-1.9-4.el7.x86_64 perl-Exporter-5.68-3.el7.noarch ksh-20120801-22.el7.x86_64

perl-5.16.3-285.el7.x86_64

The following required OS rpms (or higher version) were not found on docker2:

 net-tools-2.0-0.17.20131004git.el7.x86_64 bc-1.06.95-13.el7.x86_64 perl-

Socket-2.010-3.el7.x86_64

ed-1.9-4.el7.x86_64 perl-Exporter-5.68-3.el7.noarch ksh-20120801-22.el7.x86_64

perl-5.16.3-285.el7.x86_64

The installer provides some guidance about how to install OS rpms using native

methods, like yum, or how to

manually install the required OS rpms.

 1) Install the missing required OS rpms with yum, if yum is configured on the

systems

 2) Install the missing required OS rpms manually, (detailed steps are

provided)

 3) Do not install the missing required OS rpms

How would you like to install the missing required OS rpms? [1-3,q,?] (1)

Enable keyless (option 2) for the demo purposes:

 1) Enter a valid license key

 2) Enable keyless licensing and complete system licensing later

How would you like to license the systems? [1-2,q] (2)

And option 4 to temporarily license Veritas InfoScale Enterprise:

 1) Veritas InfoScale Foundation

 2) Veritas InfoScale Availability

 3) Veritas InfoScale Storage

 4) Veritas InfoScale Enterprise

 b) Back to previous menu

Which product would you like to register? [1-4,b,q] (4)

For this testing there is no need of I/O fencing at this point:

Do you want to configure I/O Fencing in enabled mode? [y,n,q,?] (y) n

Choose a name for your cluster:

Enter the unique cluster name: [q,?] docker

Let the installer to auto-detect the “Low Latency Transport” devices. These will be the two private

network interfaces that we configured previously during the VM setup:

 1) Configure the heartbeat links using LLT over Ethernet

 2) Configure the heartbeat links using LLT over UDP

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 7

 3) Configure the heartbeat links using LLT over RDMA

 4) Automatically detect configuration for LLT over Ethernet

 b) Back to previous menu

How would you like to configure heartbeat links? [1-4,b,q,?] (4)

If the Virtual Machines have been configured properly with the two private networks, the installer

should detect it automatically:

 Configuring LLT links: 100%

 Estimated time remaining: (mm:ss) 0:00

4 of 4

 Checking system NICs on docker1 3 NICs found

 Checking system NICs on docker2 3 NICs found

 Checking network links ... 3 links found

 Setting link priority .. Done

Enter a unique cluster ID number between 0-65535: [b,q,?] (58487)

Use the proposed ID number. There is no need here to check whether it is in use as you are using

WorkStation and we will not expect another cluster on the same network.

You can finally review the configuration before going ahead:

Cluster information verification:

 Cluster Name: docker

 Cluster ID Number: 58487

 Private Heartbeat NICs for docker1:

 link1=eno33554960

 link2=eno50332184

 Low-Priority Heartbeat NIC for docker1:

 link-lowpri1=eno16777736

 Private Heartbeat NICs for docker2:

 link1=eno33554960

 link2=eno50332184

 Low-Priority Heartbeat NIC for docker2:

 link-lowpri1=eno16777736

Is this information correct? [y,n,q,?] (y)

Configuration

If we previously answered “y” when asked about configuring the software, the installer just go ahead

and now keep asking configuration questions in order to finish the deployment. Most of the default

answers will be good enough.

No need to use any virtual IP address:

The following data is required to configure the Virtual IP of the Cluster:

 A public NIC used by each system in the cluster

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 8

 A Virtual IP address and netmask

Do you want to configure the Virtual IP? [y,n,q,?] (n) n

Accept secure mode by default:

Would you like to configure the VCS cluster in secure mode? [y,n,q,?] (y)

Do you want to grant read access to everyone? [y,n,q,?] (n)

Do you want to provide any usergroups that you would like to grant read access?

[y,n,q,?] (y) n

 1) Configure the cluster in secure mode

 2) Configure the cluster in secure mode with FIPS

 b) Back to previous menu

Select the option you would like to perform [1-2,b,q,?] (1) 1

 Other questions that will be asked and where defaults are good for this testing purpose:

Do you want to configure SMTP notification? [y,n,q,?] (n)

Do you want to configure SNMP notification? [y,n,q,?] (n)

Do you want to configure the Global Cluster Option? [y,n,q,?] (n)

The next step will restart the processes and will perform the configuration:

Do you want to stop InfoScale Enterprise processes now? [y,n,q,?] (y)

The configuration process will start:

Logs are being written to /var/tmp/installer-201605031034Xhi while installer is in

progress

 Starting SFCFSHA: 76%

 Estimated time remaining: (mm:ss) 1:35

23 of 30

 Performing SFCFSHA configuration Done

 Starting veki .. Done

 Starting vxdmp ... Done

 Starting vxio .. Done

 Starting vxspec .. Done

….

….

….

Once completed, the cluster will be ready to be configured with storage and to be used with Docker

once the plug-in is installed.

Storage Configuration

Before adding storage to each of the VMs, it is a good practice to set the flag disk.EnableUUID =

“TRUE” in the VM configuration file. When using VMware WorkStation, power off the VM and

edit the file to add that entry:

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 9

flag disk.EnableUUID = “TRUE”

Now we need to add some local storage to each of the VMs. For testing purposes, we can add just

one local VMDK to each of the VMs. For each of the VMs, go to “Settings” and click on the “Add”

button and select “Hard Disk”. You can store the virtual disk with the VM.

Once the disk is created, you can go the each VM shell and run this command:

[root@docker1 ~]# vxdisk list

DEVICE TYPE DISK GROUP STATUS

docker1_disk_1 auto:LVM - - LVM

docker1_disk_2 auto:none - - online invalid

At the second node:

[root@docker2 ~]# vxdisk list

DEVICE TYPE DISK GROUP STATUS

docker2_disk_1 auto:LVM - - LVM

docker2_disk_2 auto:none - - online invalid

Note that in our configuration, the disk listed as “online invalid” is the new one added. The name of

the disk is <hostname>_<disk>_<number>, so we can clearly identify each disk within the cluster.

In each of the node, initialize the local disk to be used. On docker1:

[root@docker1 ~]# /opt/VRTS/bin/vxdisksetup -i docker1_disk_2

On docker2:

[root@docker2 ~]# /opt/VRTS/bin/vxdisksetup -i docker2_disk_2

In any of the nodes you can see how now the disks are “online” after they have been initialized:

[root@docker1 ~]# vxdisk -o cluster list

DEVICE MEDIA SIZE(MB) GROUP NODES STATE

docker1_disk_2 hdd 20480 - 1 online

docker2_disk_2 hdd 20480 - 1 online

The final step is to create a pool of storage (disk group) that will contain all the disks that will be

used across the cluster. That includes, in this example, the local storage from docker1 and docker2

nodes.

From the list of disks we got from the previous command, execute the vxdg command to create a disk

group named dockerdg:

[root@docker1 ~]# vxdg -o fss -s init dockerdg docker1_disk_2 docker2_disk_2

We can see how now those disks are included in the dockerdg disk group:

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 10

[root@docker1 ~]# vxdisk -o cluster list

DEVICE MEDIA SIZE(MB) GROUP NODES STATE

docker1_disk_2 hdd 20480 dockerdg 1 online

docker2_disk_2 hdd 20480 dockerdg 1 online

From this point, we will install the Docker Plug-in and it will take care of storage provisioning.

Docker Engine & InfoScale Plug-in Installation

InfoScale Docker Plug-in Installation

Make sure you have downloaded the latest version of the plug-in from:

https://www.veritas.com/community/downloads/5-plug-trialware-download

Remember that you have to become a member of the Veritas InfoScale Containers Group.

You will get the file: VRTSdocker-plugin-1.1-Linux.x86_64.rpm. Install the package in each of the

nodes:

[root@docker1 ~]# yum install VRTSdocker-plugin-1.1-Linux.x86_64.rpm

Loaded plugins: product-id, rhnplugin, subscription-manager

This system is receiving updates from RHN Classic or Red Hat Satellite.

Examining VRTSdocker-plugin-1.1-Linux.x86_64.rpm: VRTSdocker-plugin-1.1-

Linux.x86_64

Marking VRTSdocker-plugin-1.1-Linux.x86_64.rpm to be installed

Resolving Dependencies

--> Running transaction check

---> Package VRTSdocker-plugin.x86_64 0:1.1-Linux will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

===

 Package Arch Version

Repository Size

===

===

Installing:

 VRTSdocker-plugin x86_64 1.1-Linux

/VRTSdocker-plugin-1.1-Linux.x86_64 6.7 M

Transaction Summary

===

===

Install 1 Package

Total size: 6.7 M

Installed size: 6.7 M

Is this ok [y/d/N]: y

Downloading packages:

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

https://www.veritas.com/community/downloads/5-plug-trialware-download
http://www.veritas.com/community/groups/veritas-infoscale-containers-group

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 11

Warning: RPMDB altered outside of yum.

 Installing : VRTSdocker-plugin-1.1-Linux.x86_64

1/1

ln -s '/usr/lib/systemd/system/vxinfoscale-docker.service'

'/etc/systemd/system/multi-user.target.wants/vxinfoscale-docker.service'

Redirecting to /bin/systemctl start vxinfoscale-docker.service

 Verifying : VRTSdocker-plugin-1.1-Linux.x86_64

1/1

Installed:

 VRTSdocker-plugin.x86_64 0:1.1-Linux

Complete!

[root@docker1 ~]#

Docker Engine Installation
To install docker-engine you can follow Docker’s instructions:

https://docs.docker.com/engine/installation/linux/rhel/

In each of the nodes:

Add the yum repo:

$ sudo tee /etc/yum.repos.d/docker.repo <<-EOF

[dockerrepo]

name=Docker Repository

baseurl=https://yum.dockerproject.org/repo/main/centos/7

enabled=1

gpgcheck=1

gpgkey=https://yum.dockerproject.org/gpg

EOF

Install the Docker package in each node:

[root@docker1 ~]# yum install docker-engine

….

….

Installed:

 docker-engine.x86_64 0:1.11.1-1.el7.centos

Dependency Installed:

 bzip2-libs.i686 0:1.0.6-13.el7 elfutils-libelf.i686 0:0.163-3.el7 elfutils-

libs.i686 0:0.163-3.el7

Updated:

 dracut.x86_64 0:033-359.el7 initscripts.x86_64 0:9.49.30-1.el7

Dependency Updated:

 bzip2-libs.x86_64 0:1.0.6-13.el7 device-mapper.x86_64

7:1.02.107-5.el7

 device-mapper-event.x86_64 7:1.02.107-5.el7 device-mapper-event-

libs.x86_64 7:1.02.107-5.el7

 device-mapper-libs.i686 7:1.02.107-5.el7 device-mapper-libs.x86_64

7:1.02.107-5.el7

 device-mapper-persistent-data.x86_64 0:0.5.5-1.el7 dracut-config-rescue.x86_64

0:033-359.el7

 dracut-network.x86_64 0:033-359.el7 elfutils-libelf.x86_64

0:0.163-3.el7

https://docs.docker.com/engine/installation/linux/rhel/

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 12

 elfutils-libs.x86_64 0:0.163-3.el7 kmod.x86_64 0:20-5.el7

 libgudev1.x86_64 0:219-19.el7 lvm2.x86_64 7:2.02.130-5.el7

 lvm2-libs.x86_64 7:2.02.130-5.el7 systemd.x86_64 0:219-19.el7

 systemd-devel.x86_64 0:219-19.el7 systemd-libs.i686 0:219-19.el7

 systemd-libs.x86_64 0:219-19.el7 systemd-sysv.x86_64 0:219-

19.el7

Complete!

Start the service:

[root@docker1 ~]# service docker start

Redirecting to /bin/systemctl start docker.service

[root@docker1 ~]#

And make sure Docker start with a system boot:

[root@docker1 ~]# chkconfig docker on

Note: Forwarding request to 'systemctl enable docker.service'.

ln -s '/usr/lib/systemd/system/docker.service' '/etc/systemd/system/multi-

user.target.wants/docker.service'

[root@docker1 ~]#

Plug-in Utilization
Once the platform has been initialized, containers can be created and volumes will be automatically

carved and attached to the containers as needed.

Initially we can check there are no volumes created:

[root@docker1 ~]# docker volume ls

DRIVER VOLUME NAME

[root@docker1 ~]#

To create a container where persistent storage is needed, use the veritas volume driver:

[root@docker1 ~]# docker volume create -d veritas --name volume1 -o size=300m

volume1

We can list it:

[root@docker1 ~]# docker volume ls

DRIVER VOLUME NAME

veritas volume1

veritas volume1_dcl

[root@docker1 ~]#

Because the driver utilization, Docker used InfoScale to create a volume which has two plexes

underneath, one residing in each of the servers, so resiliency for the persistent data is automatically

achieved. There is no need for the Docker user to know these details as the Veritas driver hides all

those tasks, but here we can see the vxprint command where the output shows two plexes, one in

each of the disks that we created previously:

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 13

[root@docker1 ~]# vxprint

Disk group: dockerdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg dockerdg dockerdg - - - - - -

dm docker1_disk_2 docker1_disk_2 - 41875568 - - - -

dm docker2_disk_2 docker2_disk_2 - 41875568 - REMOTE - -

v volume1 fsgen ENABLED 614400 - ACTIVE - -

pl volume1-01 volume1 ENABLED 614400 - ACTIVE - -

sd docker1_disk_2-01 volume1-01 ENABLED 614400 0 - - -

pl volume1-02 volume1 ENABLED 614400 - ACTIVE - -

sd docker2_disk_2-01 volume1-02 ENABLED 614400 0 - - -

dc volume1_dco volume1 - - - - - -

v volume1_dcl gen ENABLED 67840 - ACTIVE - -

pl volume1_dcl-01 volume1_dcl ENABLED 67840 - ACTIVE - -

sd docker1_disk_2-02 volume1_dcl-01 ENABLED 67840 0 - - -

pl volume1_dcl-02 volume1_dcl ENABLED 67840 - ACTIVE - -

sd docker2_disk_2-02 volume1_dcl-02 ENABLED 67840 0 - - -

[root@docker1 ~]#

NOTE: The <volume>_dcl is just used by InfoScale to provide Fast Resync.

We can inspect the volume:

[root@docker1 ~]# docker volume inspect volume1

[

 {

 "Name": "volume1",

 "Driver": "veritas",

 "Mountpoint": "/dockerfs/volume1_dockerdg",

 "Labels": {}

 }

]

Also a volume can be created when the container is created:

[root@docker1 ~]# docker run --name mysql1 -v mysql1:/var/lib/mysql --volume-driver

veritas -e MYSQL_ROOT_PASSWORD=root -d mysql:5.6

4f725dd5a8f2c82af3bd85142a3fc248777d9bda1ffbbf0f77b6af8cfd68c034

[root@docker1 ~]# docker volume ls

DRIVER VOLUME NAME

veritas mysql1

veritas mysql1_dcl

veritas volume1

veritas volume1_dcl

Or we can create the volume in advance using a desired size:

[root@docker1 ~]# docker volume create -d veritas --name mysql2 -o size=900m

mysql2

And then use it with a container:

[root@docker1 ~]# docker run --name mysql2 -v mysql2:/var/lib/mysql --volume-driver

veritas -e MYSQL_ROOT_PASSWORD=root -d mysql:5.6

e21adf0b33fe4960fdb4032092603b07ff974c1b842c145c109acce9715c0038

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 14

[root@docker1 ~]# docker volume ls

DRIVER VOLUME NAME

veritas mysql1

veritas mysql1_dcl

veritas mysql2

veritas mysql2_dcl

veritas volume1

veritas volume1_dcl

Also, the volume can be finally removed using Docker CLI:

[root@docker1 ~]# docker volume rm volume1

volume1

[root@docker1 ~]# docker volume ls

DRIVER VOLUME NAME

veritas mysql1

veritas mysql1_dcl

veritas mysql2

veritas mysql2_dcl

Testing data persistence

We can use one of the mysql containers created to put some data:

[root@docker1 ~]# docker exec -it mysql1 bash

root@4f725dd5a8f2:/# mysql -proot

Warning: Using a password on the command line interface can be insecure.

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.6.30 MySQL Community Server (GPL)

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> create database ccarrero;

Query OK, 1 row affected (0.07 sec)

mysql> use ccarrero;

Database changed

mysql> create table kids (name text, age integer);

Query OK, 0 rows affected (0.16 sec)

mysql> insert into kids values ('Marina', 7);

Query OK, 1 row affected (0.02 sec)

mysql> insert into kids values ('Diego', 3);

Query OK, 1 row affected (0.07 sec)

mysql> select * from kids;

+--------+------+

| name | age |

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 15

+--------+------+

| Marina | 7 |

| Diego | 3 |

+--------+------+

2 rows in set (0.00 sec)

mysql>

To test data persistency, power off the VM where we have that container running (docker1 in my

case). Log in into the other server (docker2) and bring up a mysql container pointing to the volume

that we had already created:

[root@docker2 ~]# docker run --name mysql1 -v mysql1:/var/lib/mysql --volume-driver

veritas -d mysql:5.6

aef961b96571250a37671dfc40e9f92630b7c4418275db3069b86daffb9d5f59

And we can connect to the database and check the data is there:

[root@docker2 ~]# docker exec -it mysql1 bash

root@aef961b96571:/# mysql -proot

Warning: Using a password on the command line interface can be insecure.

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.6.30 MySQL Community Server (GPL)

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> use ccarrero;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> select * from kids;

+--------+------+

| name | age |

+--------+------+

| Marina | 7 |

| Diego | 3 |

+--------+------+

2 rows in set (0.05 sec)

mysql>

What did happen under the covers is that Veritas InfoScale took care of data resiliency. Given that

the volume has been created with a mirror configuration by default, each node had a plex with a copy

of the data. We can use the vxprint command to inspect the current configuration and verify that one

of the plex has been disabled and the other one is still active:

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 16

[root@docker2 ~]# vxprint

Disk group: dockerdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg dockerdg dockerdg - - - - - -

dm docker1_disk_2 - - - - NODEVICE - -

dm docker2_disk_2 docker2_disk_2 - 41875568 - - - -

v mysql1 fsgen ENABLED 409600 - ACTIVE - -

pl mysql1-01 mysql1 DISABLED 409600 - NODEVICE - -

sd docker1_disk_2-03 mysql1-01 DISABLED 409600 0 NODEVICE - -

pl mysql1-02 mysql1 ENABLED 409600 - ACTIVE - -

sd docker2_disk_2-03 mysql1-02 ENABLED 409600 0 - - -

dc mysql1_dco mysql1 - - - - - -

v mysql1_dcl gen ENABLED 67840 - ACTIVE - -

pl mysql1_dcl-01 mysql1_dcl DISABLED 67840 - NODEVICE - -

sd docker1_disk_2-04 mysql1_dcl-01 DISABLED 67840 0 NODEVICE - -

pl mysql1_dcl-02 mysql1_dcl ENABLED 67840 - ACTIVE - -

sd docker2_disk_2-04 mysql1_dcl-02 ENABLED 67840 0 - - -

Also, once the VM is active again, InfoScale resynchronize just the last changes occurred in

the volume and the two plexes keep being used as normal:

[root@docker2 ~]# vxprint

Disk group: dockerdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg dockerdg dockerdg - - - - - -

dm docker1_disk_2 docker1_disk_2 - 41875568 - REMOTE - -

dm docker2_disk_2 docker2_disk_2 - 41875568 - - - -

v mysql1 fsgen ENABLED 409600 - ACTIVE - -

pl mysql1-01 mysql1 ENABLED 409600 - ACTIVE - -

sd docker1_disk_2-03 mysql1-01 ENABLED 409600 0 - - -

pl mysql1-02 mysql1 ENABLED 409600 - ACTIVE - -

sd docker2_disk_2-03 mysql1-02 ENABLED 409600 0 - - -

dc mysql1_dco mysql1 - - - - - -

v mysql1_dcl gen ENABLED 67840 - ACTIVE - -

pl mysql1_dcl-01 mysql1_dcl ENABLED 67840 - ACTIVE - -

sd docker1_disk_2-04 mysql1_dcl-01 ENABLED 67840 0 - - -

pl mysql1_dcl-02 mysql1_dcl ENABLED 67840 - ACTIVE - -

sd docker2_disk_2-04 mysql1_dcl-02 ENABLED 67840 0 - - -

All this was transparent for the Docker user that was able to keep running their containers

using persistent storage from any of the nodes within the cluster.

Quick Guide to Test InfoScale 7.1 and Docker Plug-in

 17

For specific country offices

and contact numbers,

please visit our website.

Veritas World Headquarters

500 East Middlefield Road

Mountain View, CA 94043

+1 (650) 933 1000

www.veritas.com

© 2015 Veritas Technologies LLC. All rights reserved.

Veritas and the Vertias Logo are trademarks or

registered trademarks of Veritas Technologies LLC or its

affiliates in the U.S. and other countries. Other names

may be trademarks of their respective owners.

About Veritas Technologies LLC

Veritas Technologies LLC enables organizations to harness

the power of their information, with solutions designed to

serve the world’s largest and most complex heterogeneous

environments. Veritas works with 86 percent of Fortune 500

companies today, improving data availability and revealing

insights to drive competitive advantage.

